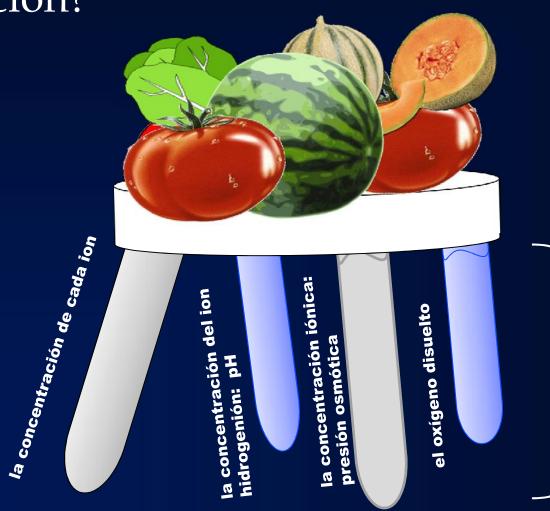


Criterios para el ajuste de la solución nutritiva

Miguel Urrestarazu Gavilán

2 SIMPOSIO REGIONAL DE VIVEROS CITRICOS BAJO CUBIERTA 11, 12 y 13 de mayo de 2016


Steiner 1960s (Steiner, 1961):

- 1. la concentración de cada ión
- 2. el pH de la disolución
- 3. la concentración iónica (total)

INTRODUCCIÓN

¿factores a considerar de los qué depende la eficiencia y eficacia de la solución nutritiva en la

producción?

Temperatura

4.1. Introducción

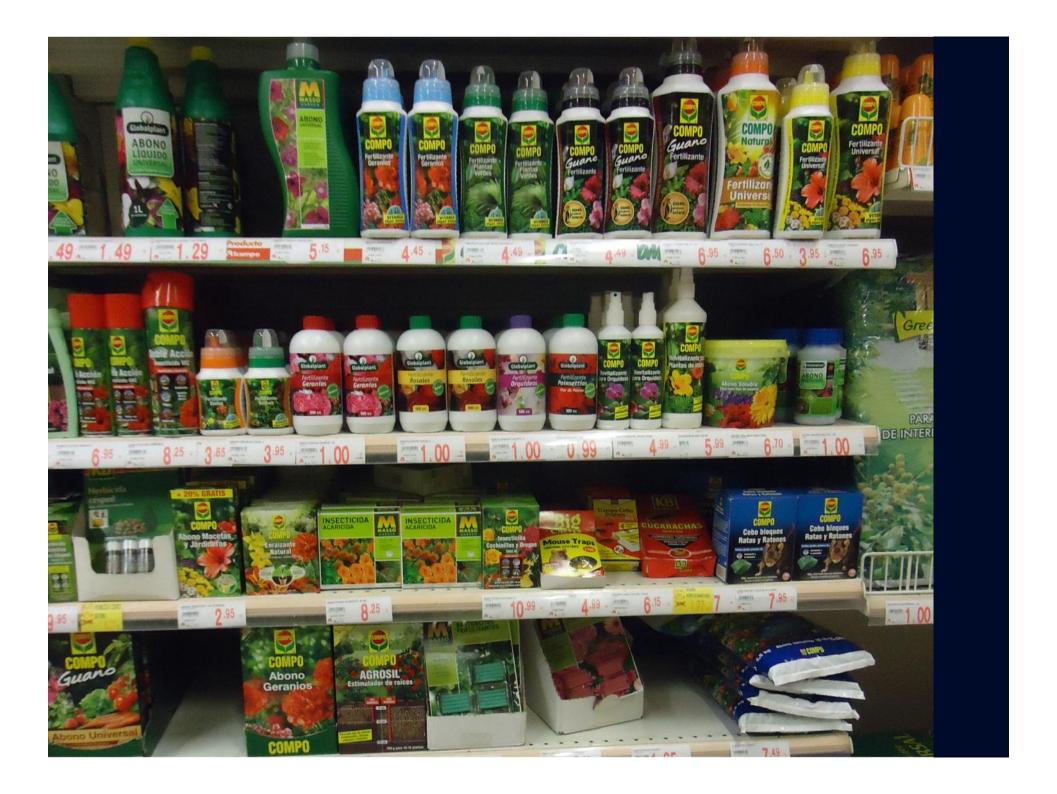
						Formulación de la				
		<u>Forma</u>	Pm		Pe	sal o		Pm		Pe
Elemento	Pa	<u>iónica</u>	mol	V	е	fertilizante	<u>Nombre</u>	mol	V	е
N	14	NH_4^+	18	1	18	HNO_3	Ácido nítrico	63	1	63
		NO_3^{-1}	62	1	62	NH_4NO_3	Amonio Nitrato	80	1	80
						$(NH_4)_2SO_4$	Amonio Sulfato	132	2	66
						Ca(NO ₃) ₂ 4H ₂ 0	Calcio Nitrato 4- hidrato	236	2	118
						$Ca(NO_3^2)_2 H_20$	Calcio Nitrato 1- hidrato	182	2	91
						KNO ₃	Potasio Nitrato	101	1	101
Р	31	H ₂ PO ₄ -	97	1**	97	H ₃ PO ₄	Ácido fosfórico	98	1	98
		- '				$NH_4H_2PO_4$	Amonio di-hidrogeno	115	1	115
						KH ₂ PO ₄	Fosfato Potasio di-hidrogeno Fosfato	136	1	136
K	39	K+	39	1	39	KNO ₃	Potasio Nitrato	101	1	101
						$KH_2P\breve{O}_4$	Potasio di-hidrogeno	136	1	136
							Fosfato Potasio Sulfato	174	2	87
						K_2SO_4				

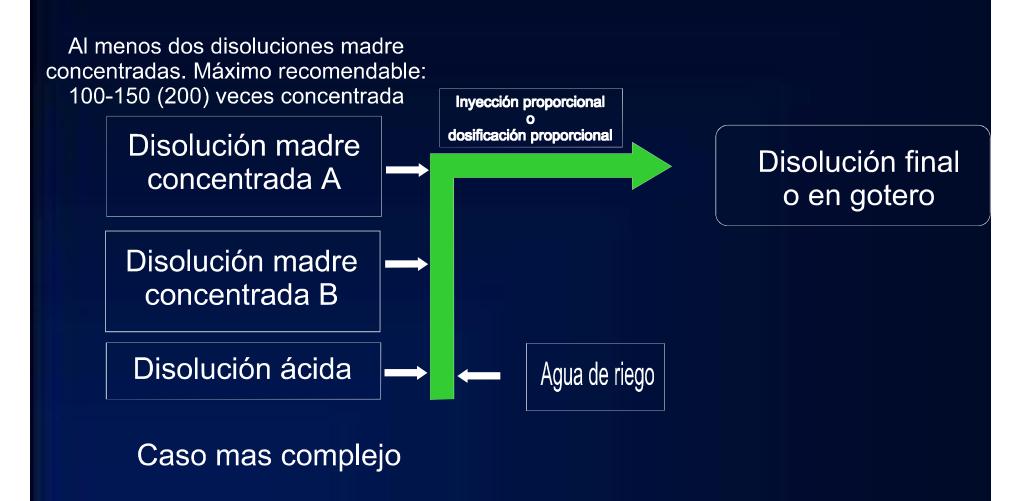
^{*}Abajo se recogen algunos de los fertilizantes mas utilizados y recomendados, sin embargo por su disponibilidad pueden encontrarse otros en determinadas regiones ver tabla A.10 del apéndice
**Para el intervalo de pH en el que se debe mover la disolución nutritiva (ver apartado 7.4).

4.1. Introducción

					Fo	ormulación de				
		Forma	Pm		Pe	la		Pm		Pe
Elemento	Pa	iónica	mol	V	e sa	ll o fertilizante	Nombre	mol	V	е
Ca	40	Ca ²⁺	40	2	20	Ca(NO ₃) ₂ 4H ₂ 0	Calcio Nitrato 4- hidrato	236	2	118
Mg	24	Mg ²⁺	24	2	12	${ m MgSO_4~7H_20}$ ${ m Mg(NO_3)_2~6H_20}$	Magnesio Sulfato 7- hidrato Magnesio Nitrato 6- hidrato	246 256	2 2	123 128
S	32	SO ₄ ²⁻	96	2	48	$egin{aligned} & K_2SO_4 \\ & MgSO_4 \ 7H_20 \\ & (NH_4)_2 SO_4 \end{aligned}$	Potasio Sulfato Magnesio Sulfato 7- hidrato Amonio Sulfato	174 246 132	2 2 2	87 123 66
Cl	35,5	Cl-	35,5	1	35,5					
Na	23	Na+	23	1	23					
С	12	CO ₃ ² - HCO ₃ -	60 61							

^{*}Abajo se recogen algunos de los fertilizantes mas utilizados y recomendados, sin embargo por su disponibilidad pueden encontrarse otros en determinadas regiones ver tabla A.10 del apéndice
**Para el intervalo de pH en el que se debe mover la disolución nutritiva (ver apartado 7.4).


La disolución nutritiva con una balsa auxiliar


1 sola disolución madre concentrada Máximo recomendable: 10-15 veces concentrada

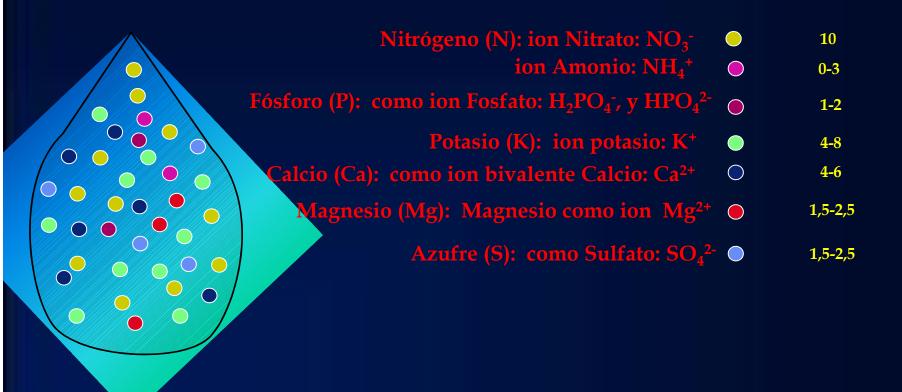
Caso simple

Posibles formas de suministrar la disolución en el gotero desde el cabezal de riego

Posibles formas de suministrar la disolución en el gotero desde el cabezal de riego

- Qué es la disolución ideal
- ¿Existe la disolución ideal?
 - Factores agronómicos (microclimáticos, genéticos y de manejo)
- Fases en la fabricación y elaboración de la disolución ideal
 - 1. Elegir una disolución nutritiva tipo o ideal
 - 2. Los iones nutritivos en el agua de riego
 - 3. Concentraciones de fertilizantes a aportar para obtener las concentraciones de nutrientes deseadas (disolución final)
 - 4. Calcular y distribuir en los diferentes tanques (mínimo dos más uno de ácido) los pesos o volúmenes de cada fertilizante a disolver o añadir en el cabezal de riego.

Otra forma de nutrir a las plantas: filosofía



"cada gota su equilibrio"

Otra forma de nutrir a las plantas: filosofía "cada gota con su equilibrio completo"

Nº aproximado Proporcional (En Moles)

Cálculo de los aportes previstos mediante los fertilizantes utilizando la disolución ideal recomendada de Sonneveld (1980) y suponiendo nulo el aporte de agua

	Anion	es (<i>mmo</i>	I L ⁻¹)		Ca	ationes		CE			
	NO ₃ -	H ₂ PO ₄	SO ₄ ²⁻	HCO ₃ - Cl-	NH ₄ +	K+	Ca ²⁺	Mg ²⁺	Na+	pН	dS m ⁻¹
Agua de riego											
Disolución tipo	10,5	1,50	2,5	-	0,5	7,0	3,75	1,0			
A aportar por fertilizante	10,5	1,50	2,5		0,5	7,0	3,75	1,0			

Cambio de expresión milimolar (mmol L-1) a milinormal (me L-1)

	NO ₃ -	H ₂ PO ₄ -	SO ₄ ²⁻	NH ₄ +	K+	Ca ²⁺	Mg²+	
mmol L ⁻¹	10,5	1,50	2,5	0,5	7,0	3,75	1,0	
Valencia	1	1	2	1	1	2	2	
me L ⁻¹	10,5	1,50	5,0	0,5	7,0	7,50	2,0	

Estadillo resuelto para calcular los gramos o litros a aportar de cada fertilizante comercial en función de los me L-1 requeridos de cada ion nutriente en la disolución tipo

Pf (Peso de fertilizante) = ce x Pe x vl x c, sustituyendo Pf = $0.5 \text{ me } L^{-1} \times 80 \text{ mg } me^{-1} \times 1000 \text{ L x } 100 = 4.000.000 \text{ mg}$ a añadir al tanque de 1000 litros; Pf = 4 kg serán los que tengamos que pesar para nuestro caso

11 - 4 18 3	serán los que te HCO ⁻		ones (n			Total de		
Aniones <i>(me L⁻¹)</i>	Agua de riego						Fertilizante a utilizar	Peso (kg) o litros (ácidos) a utilizar para 1000 Lconcentrada 100 veces
NO ₃ -	_					10,5 ⁽⁷⁾	Nitrato amónico ⁽¹⁵⁾	4,0 ⁽²¹⁾
3		-	2,5 ⁽²⁾	-			Nitrato potásico (16)	25,25 ⁽²²⁾
		-	-	7,5) -		Nitrato cálcico ⁽¹⁷⁾	88,5 ⁽²³⁾
H ₂ PO ₄ -		-	1,5 ⁽⁴⁾	-	-	1,5 ⁽⁸⁾	Fosfato potásico ⁽¹⁸⁾	20,4 ⁽²⁴⁾
H ₂ PO ₄ - SO ₄ 2-			3,0 ⁽⁵⁾			5,0 ⁽⁹⁾	Sulfato potásico ⁽¹⁹⁾	26,1 ⁽²⁵⁾
		-	-	-	2,0 ⁽⁶⁾		Sulfato magnésico (20)	24,6 ⁽²⁶⁾
Total de cada catió	n (),5 ⁽¹⁰⁾	7,0 (11)	7,5	2,0(13	17,0 ⁽¹⁴⁾		Total: $(kg \circ L) = 1$
		Opción						

Estadillo resuelto para calcular los gramos o litros a aportar de cada fertilizante comercial en función de los me L-1 requeridos de cada ion nutriente en la disolución tipo

ati	ones (r	ne L ⁻¹)		Total de	Fertilizante	Peso (kg) o litros (ácidos) a utilizar	Descomposición en tanque		
14	K ⁺	Ca ²⁺	Mg ²⁺	cada anión	a utilizar	para 1000 L concentrada 100 veces	Α	В	
₅ (1)	-	-	-	10,5 ⁽⁷⁾	Nitrato amónico ⁽¹⁵⁾	4,0 ⁽²¹⁾	4,0 ⁽²⁷⁾		
	2,5 (2)				Nitrato potásico ⁽¹⁶⁾			12,63 ⁽²⁹⁾	
		7,5) -		Nitrato cálcico ⁽¹⁷⁾	88,5 ⁽²³⁾	88,5 ⁽³⁰⁾		
	1,5 ⁽⁴⁾	-	-	1,5 ⁽⁸⁾	Fosfato potásico ⁽¹⁸⁾	20,4 ⁽²⁴⁾		20,4 ⁽³¹⁾	
	3,0 ⁽⁵⁾	-	-	5,0 ⁽⁹⁾	Sulfato potásico ⁽¹⁹⁾	26,1 ⁽²⁵⁾		26,1 ⁽³²⁾	
	-	-	2,0 ⁽⁶⁾		Sulfato magnésico (20)	24,6 ⁽²⁶⁾		24,6 ⁽³³⁾	
							Quelatos: 2 (34)		
(10)	7,0 ⁽¹¹⁾	7,5 ⁽¹²	²⁾ 2,0 ⁽¹³	⁾ 17,0 ⁽¹⁴⁾		Total:($kg \circ L$) =		83,73 ⁽³⁶⁾	

Estadillo resuelto para calcular los gramos o litros a aportar de cada fertilizante comercial en función de los me L-1 requeridos de cada ion nutriente en la disolución tipo. Segunda opción

				-1.		Total da					
	HCO ₃	Cati	ones (<i>i</i>	,		Total de	Fertilizante	Peso (kg) o litros (ácidos) a utilizar			
Aniones (me L ⁻¹)	Agua de riego	NH_4^+	K ⁺	Ca ²⁺	Mg ²⁺	cada anión	a utilizar	para 1000 L concentrada 100 veces	, A		
NO ₃		0,5	-	-	-	10,5	Nitrato amónico	4,0	4,0		
		-	0,5	-			Nitrato potásico	5,1	2,55		
				7,5			Nitrato cálcico	88,5	88,5		
					2,0	2,0	Nitrato magnésico	25,6	12,8		
H ₂ PO ₄		-	1,5		-	1,5	Fosfato potásico	20,4			
SO ₄ ²⁻		-	5,0	-	-	5,0	Sulfato potásico	43,5			
									Quel		
Total de cada catión		0,5	7,0	7,5	2,0	17,0		Total:($kg \circ L$) =	109,8		

De Zipolex por ejemplo

Cálculo de los aportes previstos mediante los fertilizantes utilizando la disolución ideal considerando un agua de riego

	Anione	es (<i>mm</i> o	ol L ⁻¹)			Ca	ationes	(mmol L ⁻¹)			CE
	NO ₃ -	H ₂ PO ₄	- SO ₄ ²⁻	HCO ₃ -	Cl ⁻	NH ₄ ⁺	K+	Ca ²⁺	Mg ²⁺	Na ⁺	рН	dS m ⁻¹
Agua de riego			0,78	2,51	1,78			1,33	0,80	1,28	7,97	0,46
Disolución tipo	13,5	2,0	1,00	-	-		5,0	6,00	1,00			
A aportar por fertilizante	13,5	2,0	0,22	-	-	-	5,0	4,67	0,20	-		

Cambio de expresión milimolar ($mmol L^{-1}$) a milinormal ($me L^{-1}$)

		Aniones	;	Cationes						
	NO ₃ -	H ₂ PO ₄ -	SO ₄ ²⁻	NH ₄ +	K+	Ca ²⁺	Mg²+			
mmol L ⁻¹	13,50	2	0,22	-	5,0	4,67	0,20			
x valencia	1	1*	2	-	1	2	2			
me L ⁻¹	13,50	2	0,44	-	5,0	9,34	0,40			

^{*} En los intervalos de pH de la disolución nutritiva ver apartado 7.4

Estadillo resuelto para calcular los gramos o litros a aportar de cada fertilizante comercial en función de los *me* L⁻¹ requeridos de disolución tipo, utilizando una tabla de doble entrada

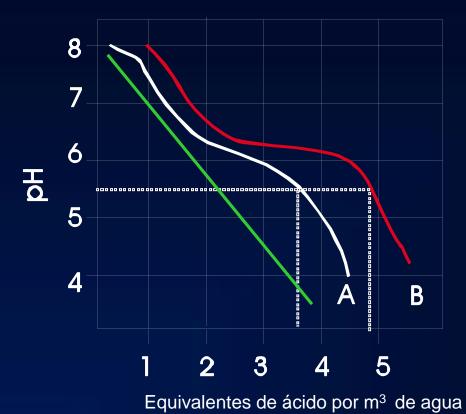
ı		HCO ₃	Cation	nes (<i>me L</i>	· ⁻¹)		Total de	Fertilizante	Peso (kg) o litros (ácidos) a utilizar	D€
	Aniones (<i>me L</i> ⁻¹)	Agua de riego	$\mathrm{NH_4}^+$	K ⁺	Ca ²⁺	Mg ²⁺	cada anión	a utilizar	para 1000 L concentrada 100 veces	Α
	NO ₃				8,50		12,5 (-1; -7%)	Nitrato cálcico	100,3	10
				4				Nitrato potásico	40,4	
	H ₂ PO ₄ ⁻			1			2 (0; 0%)	Fosfato potásico	13,6	
					1			Fosfato cálcico	11,1	
	SO ₄ ²⁻					0,42*	0,42 (-0,02; 5%)	Sulfato magnésico	5,17	
										Qι
	Total de cada catión			5 (0, 0%)	9,5 (0,16 2%)	0,42 (0,02, 5%)				To

Número medio entre 0,40 y 0,44.

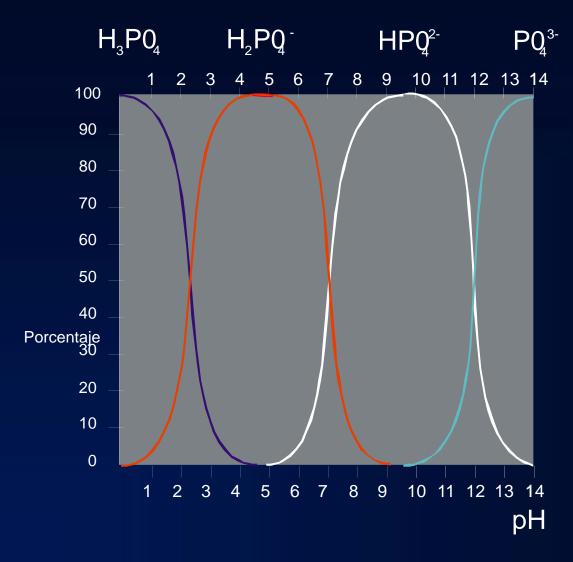
Estadillo resuelto para calcular los gramos o litros a aportar de cada fertilizante comercial en función de los *me L*⁻¹ requeridos de c disolución tipo, utilizando una tabla de doble entrada (Solución segunda para el ejemplo de la tabla 7.17)

	CHO CHOIC		,		o o o		. 3.3.3. (3.3.3.3.3 3.3.		,	
	HCO ₃	Cationes (me L ⁻¹)				Total de	Fertilizante	Peso (kg) o litros (ácidos) a utilizar		
Aniones (<i>me L</i> ⁻¹)	Agua de riego	NH_4^+	K^{+}	Ca ²⁺	Mg ²⁺	cada anión	a utilizar	para 1000 L concentrada 100 veces		
NO ₃ -	-	-	-	9,50	-	13 (-0,5; -4%)	Nitrato cálcico	112,1		
			3,5				Nitrato potásico	35,35		
H ₂ PO ₄ ⁻			2			2 (0, 0%)	Fosfato potásico	27,2		
SO ₄ ²⁻					0,42	0,42 (-0,02, 5%)	Sulfato magnésico	5,17		
									Qı	
Tatal da sa da satita			5,5	9,5	0,42				Tot	
Total de cada catión			5;10%)	(0,16; 2%)	(0,02, 5%)					
					- ,0,					

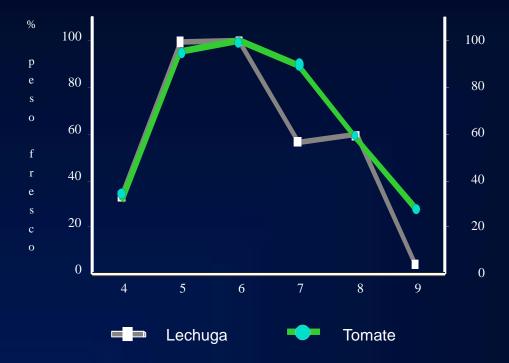
Entre paréntesis figura la diferencia existente del resultado entre el aplicado y el recomendado así como el porcentaje que representa


Disponibilidad relativa de los diversos nutrientes por las plantas en función del pH de la rizosfera. De Trough (1951) a la izquierda y de Handreck y Black (1994) a la derecha

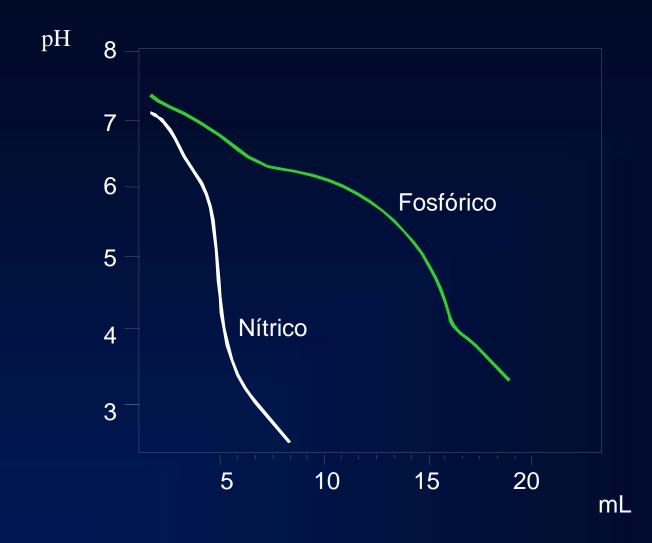
Bicarbonato


$$\begin{array}{c} \mathsf{H_3O^+} + \mathsf{HCO_3^-} \Rightarrow \mathsf{H_2CO_3} + \mathsf{H_2O} \\ \mathsf{H_2CO_3} \ \Rightarrow \ \mathsf{H_2O} + \mathsf{CO_2} \\ \mathsf{H_3O^+} + \mathsf{HCO_3^-} \Rightarrow \mathsf{2} \ \mathsf{H_2O} + \mathsf{CO_2} \end{array}$$

Carbonato


$$\begin{aligned} & \text{H}_3\text{O}^+ + \text{CO}_3^{\ 2^-} \Rightarrow \text{HCO}_3^{\ -} + \text{H}_2\text{O} \\ & \text{H}_3\text{O}^+ + \text{HCO}_3^{\ -} \Rightarrow \text{H}_2\text{CO}_3 + \text{H}_2\text{O} \\ & \text{H}_2\text{CO}_3 \Rightarrow \text{CO}_2 + \text{H}_2\text{O} \\ & 2 \text{H}_3\text{O}^+ + \text{CO}_3^{\ 2^-} \Rightarrow 3 \text{H}_2\text{O} + \text{CO}_2 \end{aligned}$$

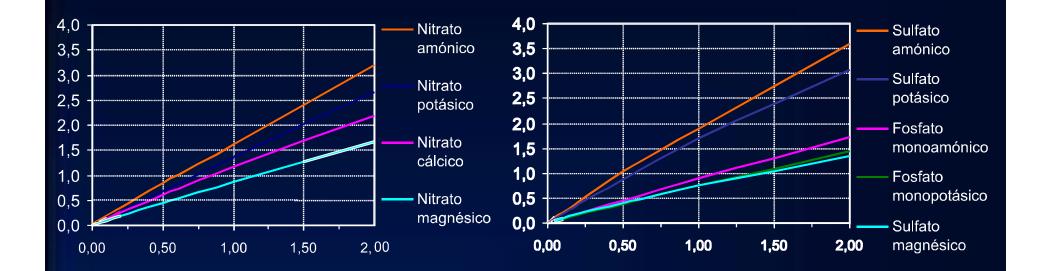
Diferentes curvas de neutralización para dos aguas de riego originadas por la presencia de bicarbonatos según Martínez y García (1993)



Proporción de la curva de disociación del ácido fosfórico en función del pH de la disolución de fertirrigación (Basada en Steiner 1961)

pH de la disolución nutritiva

Evolución del crecimiento de plantas hortícolas en función del de la disolución nutritiva. Basado en Arnon y Johnson (1942)



Diferencias de las curvas de acidificación de 200 mL de agua de riego (de sudeste francés) por la adición de los ácidos a una concentración 0,5 Normal.

Redibujado parcialmente de Brun y Montarone (1987a)

	me L ⁻¹												
	Catione	es				Aniones							
Aporte por:	NH ₄ ⁺	K+	Ca ²⁺	Mg ²⁺	Na+	NO ₃ -	H ₂ PO ₄ -	SO ₄ ²⁻	Cl-	HCO ₃ -			
Fertilizante	-	5	9,34	0,42		14,34	2,01	0,42	-	-			
Agua de riego	-		2,66	1,60	1,28	-	-	1,56	1,78	2,51			
Fertirriego:													
Σ me L^{-1}					A relle	enar por el a	alumno						
Σ mg L ⁻¹													
Σ Cationes <i>me L</i> ⁻¹ =		Σ	Aniones <i>m</i>	e L ⁻¹ =		ST (Σ	mg L ⁻¹) =	(1) (CE _{Teórica} :	dS m ⁻¹			
Σ Cationes- Σ Aniones	s (C-A, <i>m</i>	ne L-1)=			%				CE _{Teórica} =	dS m ⁻¹			

^{*}Resulta de 2,51 aportados por el agua de riego menos 2,01 del ácido fosfórico aportado para el suministro del fosfato (1) y (2) son las ecuaciones arriba descritas en el texto

Conductividad eléctrica de la disolución ($dS m^3$) de diferentes sales fertilizantes (en abscisa) en agua destilada en función de su concentración en agua desionizada ($g L^3$) representadas en ordenada. Basados en Brun y Montarone (1987b) y Alarcón (199**8**)

Equilibrio de los macronutrientes en una disolución nutritiva universal para cultivos que crecen en ella. Proporción expresada en equivalente

	Catione	:S			Aniones			
Relación en equivalente expresada como:	K ⁺	Ca ²⁺	Mg ²⁺	Na ⁺	NO ₃ -	H ₂ PO ₄ -	SO ₄ ²⁻	Cl ⁻
Disolución Nutritiva Universal	35	45	20	0	60	5	35	0
Límites tolerables	25/45	35/55	6	**	35/65	3/12	25/45	0/20
Cultivos aprovechables por frutos *	50	44	6	**	69	9	22	**
Cultivos de hojas de crecimiento rápido*	38	56	6	**	90	0,5	9,5	**
Cultivos de hojas de crecimiento lento*	67	31	2	**	79	1,5	19,5	**

^{*} Valores medios de diversos cultivos, ** No determinado *Fuente*: Steiner, (1997)

Recomendación de los fertilizantes a disolver para obtener los macronutrientes en las disoluciones nutritivas en función del estado fenológico. Datos expresados en $g L^{-1}$

	Reference	ia								
	Jensen y	Collins (19	85)		Resh (1993)					
	Hasta los 1º frutos		Desde el cosechado de los 1º frutos		(1) Desde los días 10-14 (primera hoja verdadera) hasta los 35 a 40 <i>cm</i>	(2) Hasta el primer ramillete desarrollado con un à de 0,8 <i>cm</i> . Desde los 35-40 <i>cm</i> a los 100 <i>cm</i>	(3) Después del primer fruto maduro			
	Tomate	Pepino	Tomate	Pepino	Tomate					
MgSO ₄ .7H ₂ O	0,50	0,5	0,5	0,50	0,33	0,33	0,45			
KH ₂ PO ₄	0,27	0,27	0,27	0,27	0,23	0,25	0,29			
KNO ₃	0,20	0,20	0,20	0,20	0,18	0,19	0,31			
K ₂ SO ₄	0,10	-	0,10	-	0,16	0,39	-			
Ca(NO ₃) ₂	0,5	0,680	0,680	1,357	0,20	0,69	0,92			

Equilibrios de algunos macronutrientes en la disolución nutritiva para un cultivo de pepino. Datos expresados en $mg L^{-1}$ para una CE de 1,8 $dS m^{-1}$ (Estadío fenológico)

Equilibrios	N como NO ₃	N como NH ₄	Р	K	Mg	Ca
1. Desarrollo vegetativo	150	25	50	130	40	120
2. Mantener un crecimiento rápido	200	30	45	150	40	120
3. Primar el desarrollo de los frutos	160	25	40	220	45	120

Fuente: Lefebvre (1987)

Recomendaciones de fertirriego combinando los equilibrios de algunos macronutrientes y las CEs en función de fenología y variables climáticas para un cultivo de pepino en lana de roca

Estadío fenológico o período	Intervalo de CE. dS m ⁻¹	Equilibrio y observaciones*
Desarrollo inicial	1,6	(1)*
Desarrollo de las plántulas	1,4-1,8	(1)
Hasta 0,75 <i>cm</i>	1,6-2,2	(1)
De 0,75 hasta el 1º fruto	2,2-2,3	(2) (+0,3 para día nublado)
Producción de frutos en:	2,2-2,5	(3) (según cambios)
junio	1,8-2,0	(3) (según cambios)
junio-septiembre	1,6-1,8	(3) (según cambios)
septiembre	1,8	(3) (día despejado)
	2,0	(3) (nublado)
octubre-noviembre	2,0	(3) (día despejado)
	2,3-2,5	(3) (nublado)

Fuente: Lefebvre (1987). * De la tabla 7.28

Niveles de referencia recomendados para un cultivo de tomate en lana de roca en función de una pretensión productiva

mmo	, ,	
mmo	-	_

NO ₃ -	H ₂ PO ₄ -	SO ₄ ²⁻	CI-	NH ₄ +	Ca ²⁺	Mg ²⁺	K+	Na+	CE	Referencia
10,5	1,5	2,5	-	0,5	3,75	1,0	7,0		1,75	Sonneveld (1980)
13,75	1,25	3,75	-	1,25	4,25	2,0	8,75		2,3	Sonneveld y Straver (1994)
18,0	1,0	6,8	< 15	-	10,0	4,5	8,0	< 12	4,0	Sonneveld (1999)

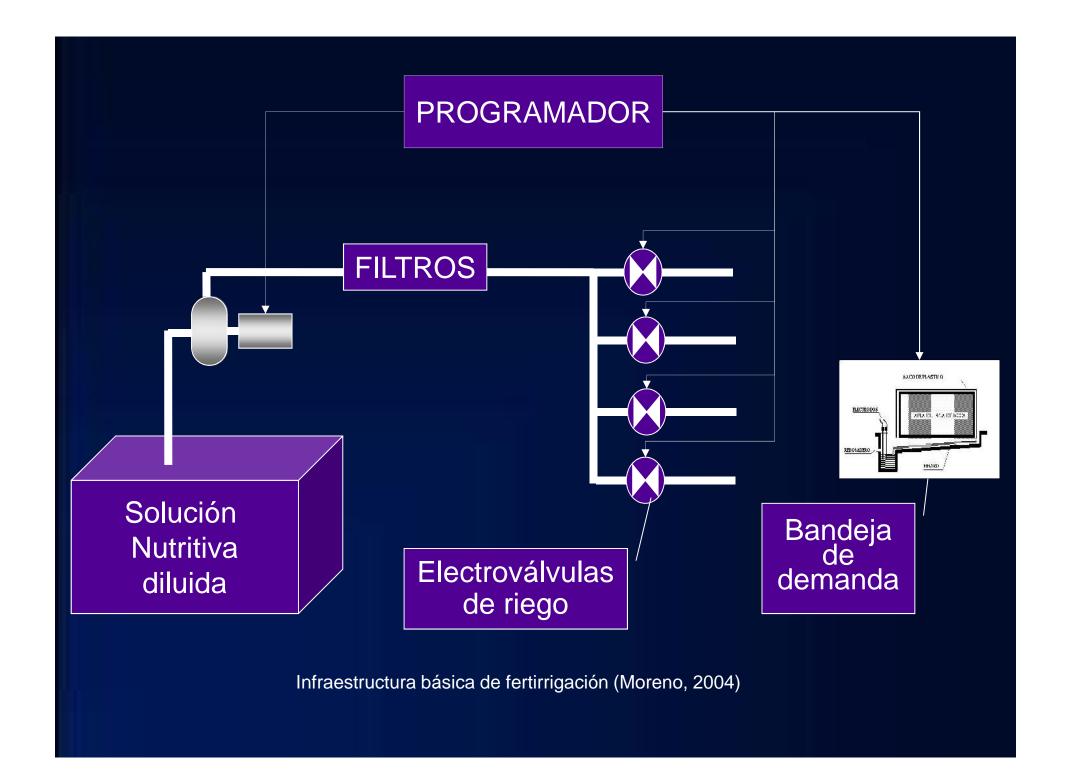
Ejemplos de niveles de referencia a mantener en la lana de roca

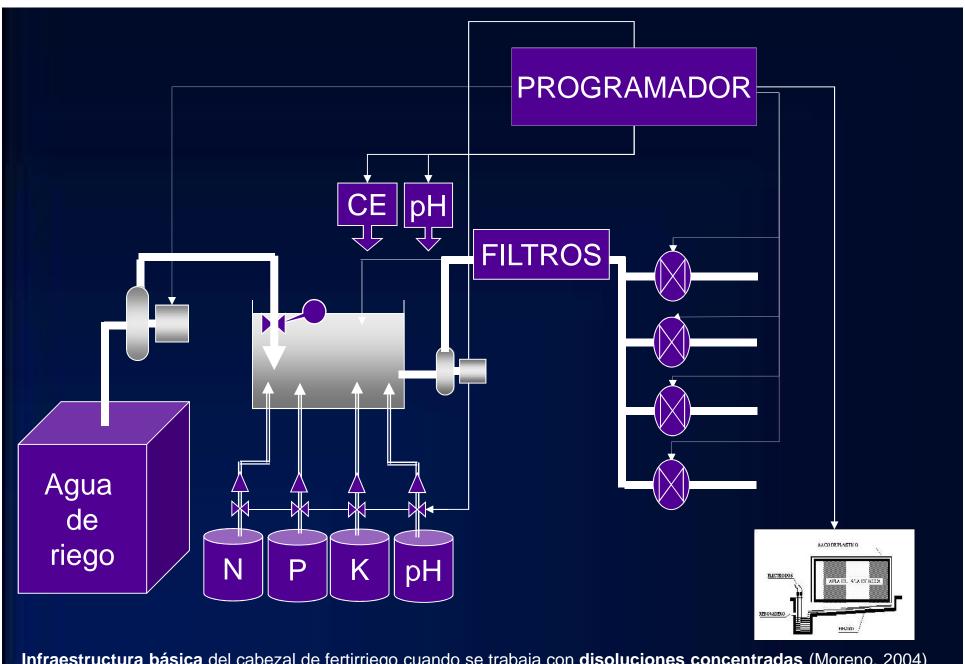
mmol L-1

NO ₃ -	H ₂ PO ₄ -	SO ₄ ²⁻	NH ₄ +	Ca ²⁺	Mg²+	K+	Cultivo
17,0	1,2	3,0	<0,5	8,0	3,0	6,0	Pimiento
18,0	0,9	3,5	<0,5	8,0	3,0	8,0	Pepino

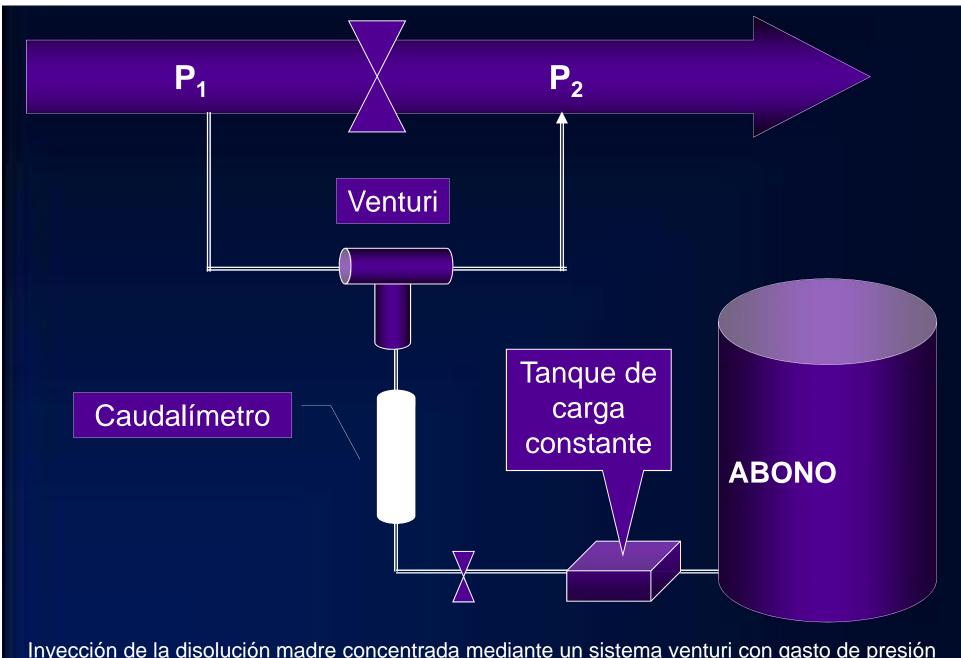
Fuente: Sonneveld y Straver (1994)

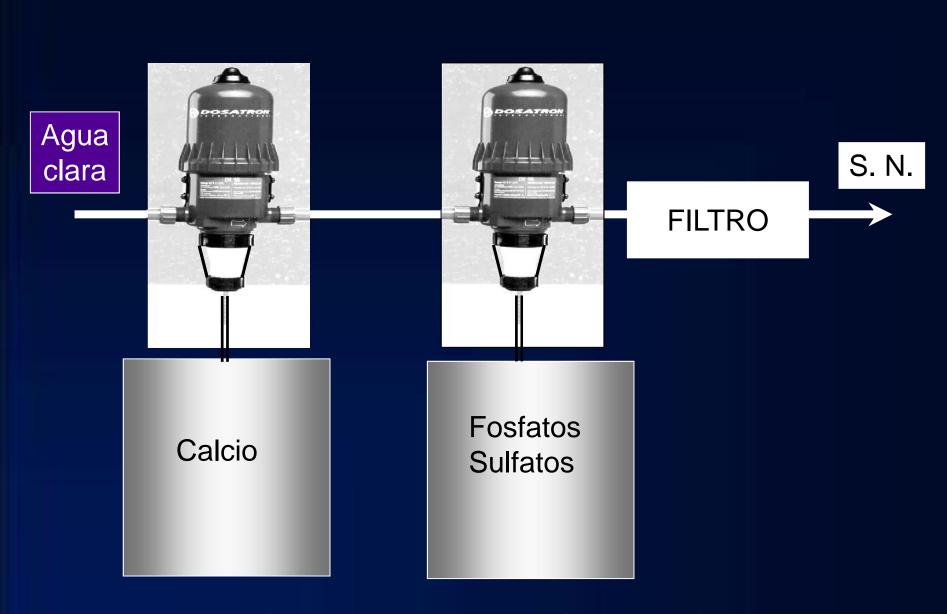
Abonadora de presión

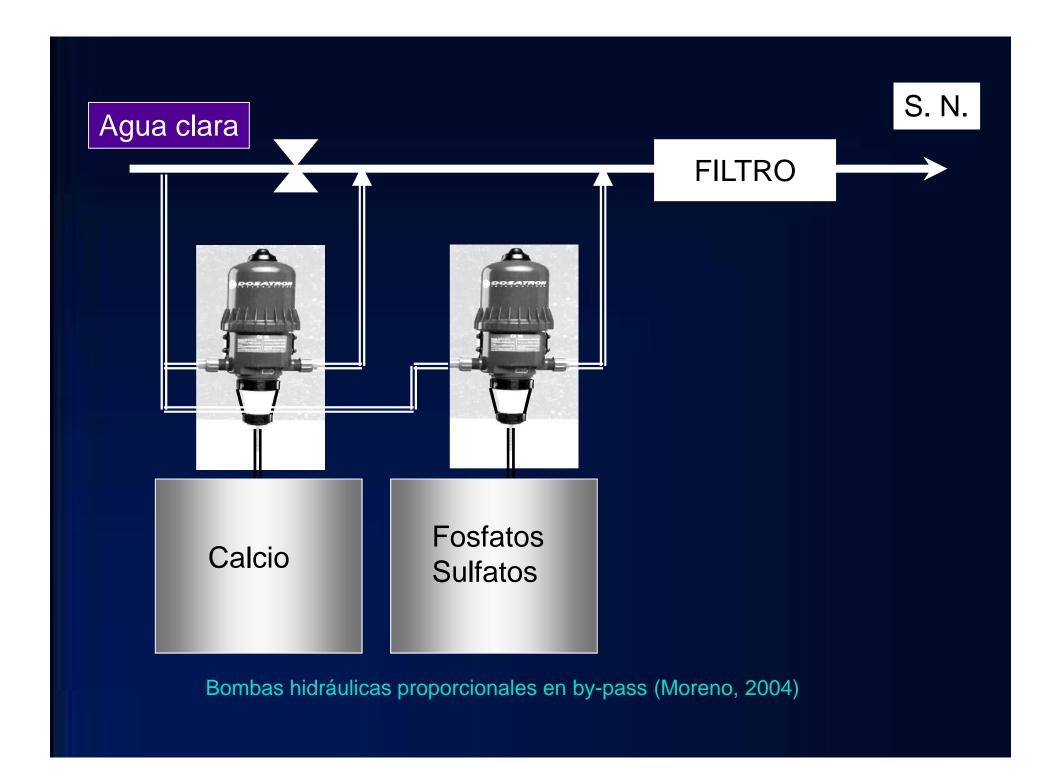


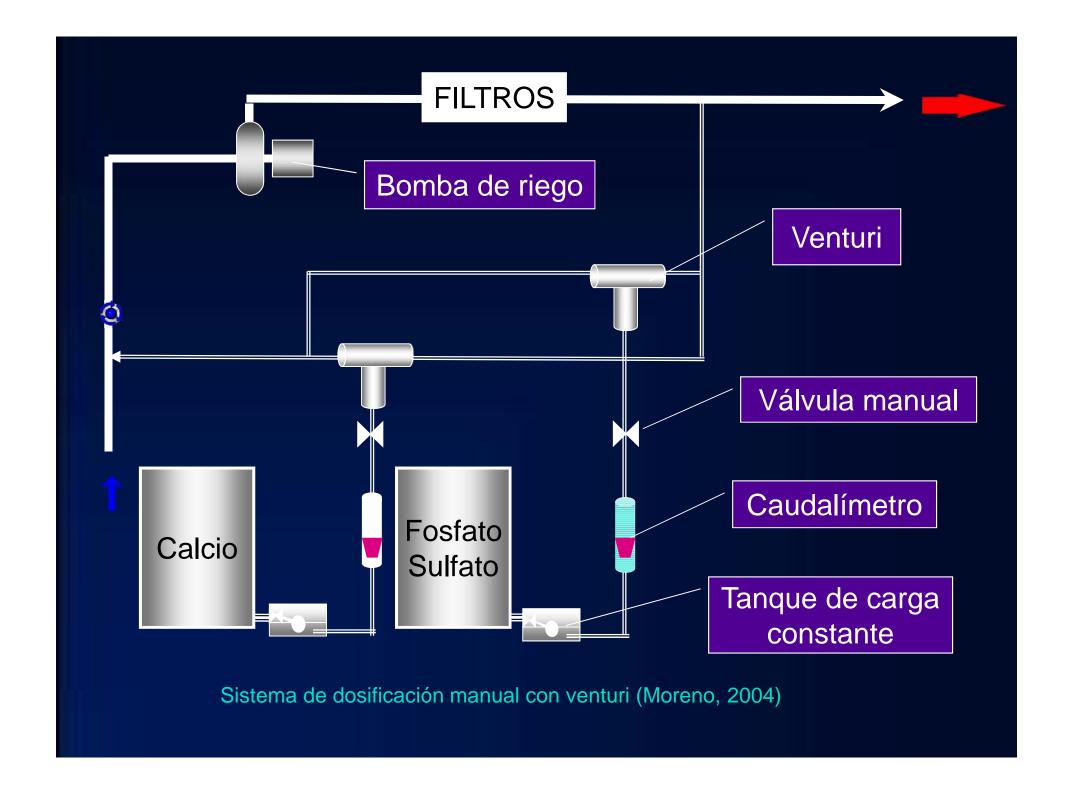


Fertilizantes líquidos



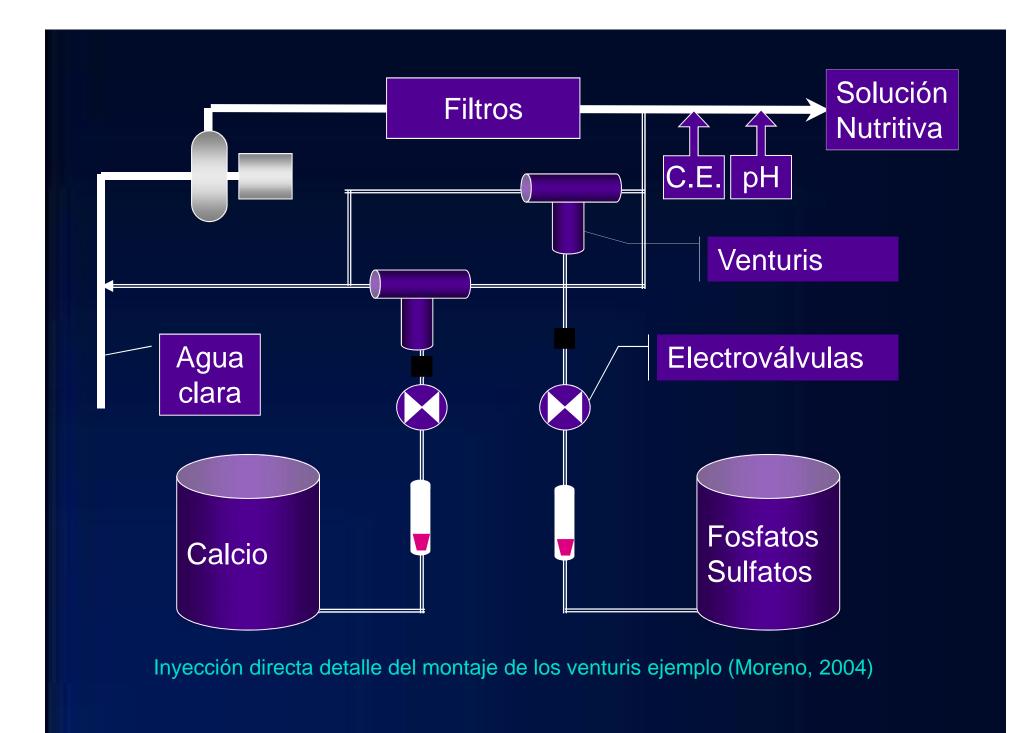


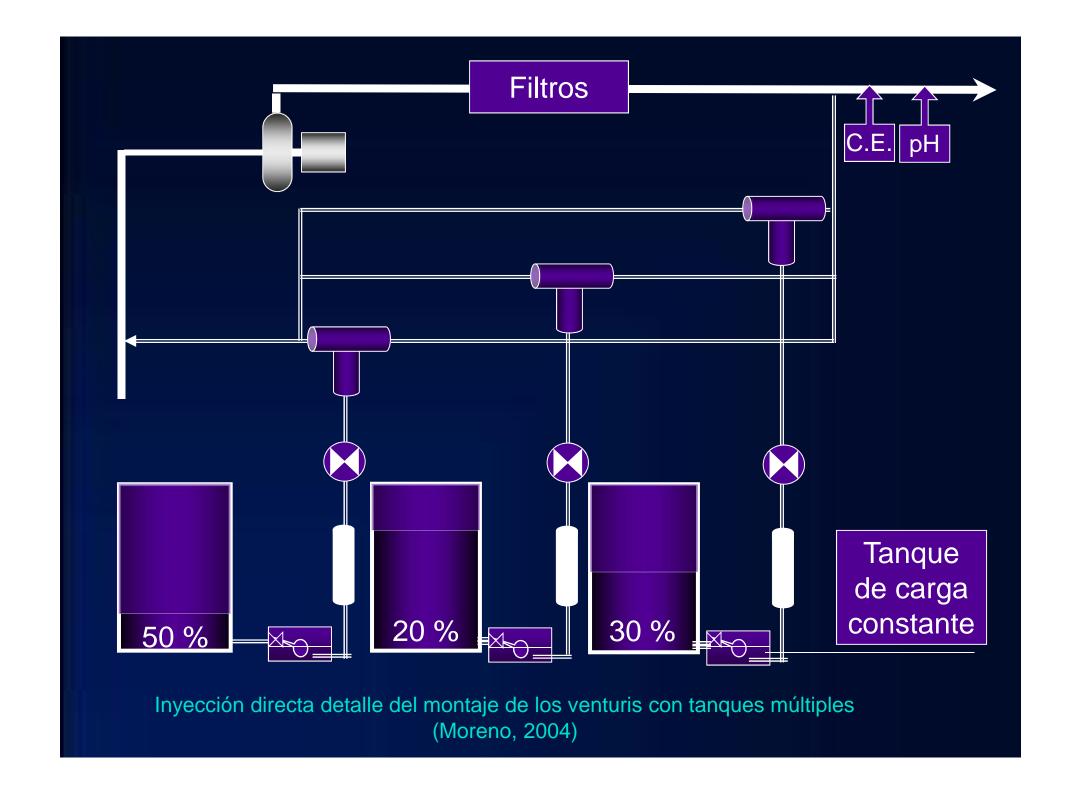

Infraestructura básica del cabezal de fertirriego cuando se trabaja con disoluciones concentradas (Moreno, 2004)

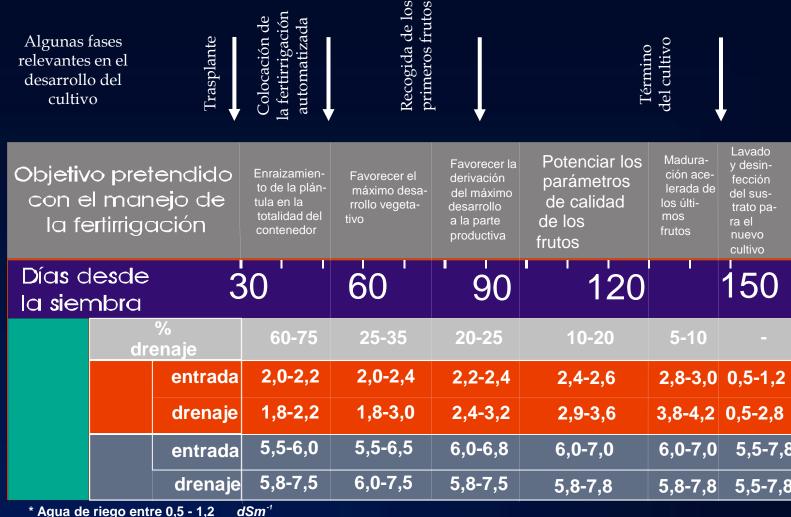


Inyección de la disolución madre concentrada mediante un sistema venturi con gasto de presión (Moreno, 2004)

Bombas hidráulicas proporcionales en serie (Moreno, 2004)







Bomba inyectora de pistón con dos cabezales de inyección y ajuste (Moreno, 2004)

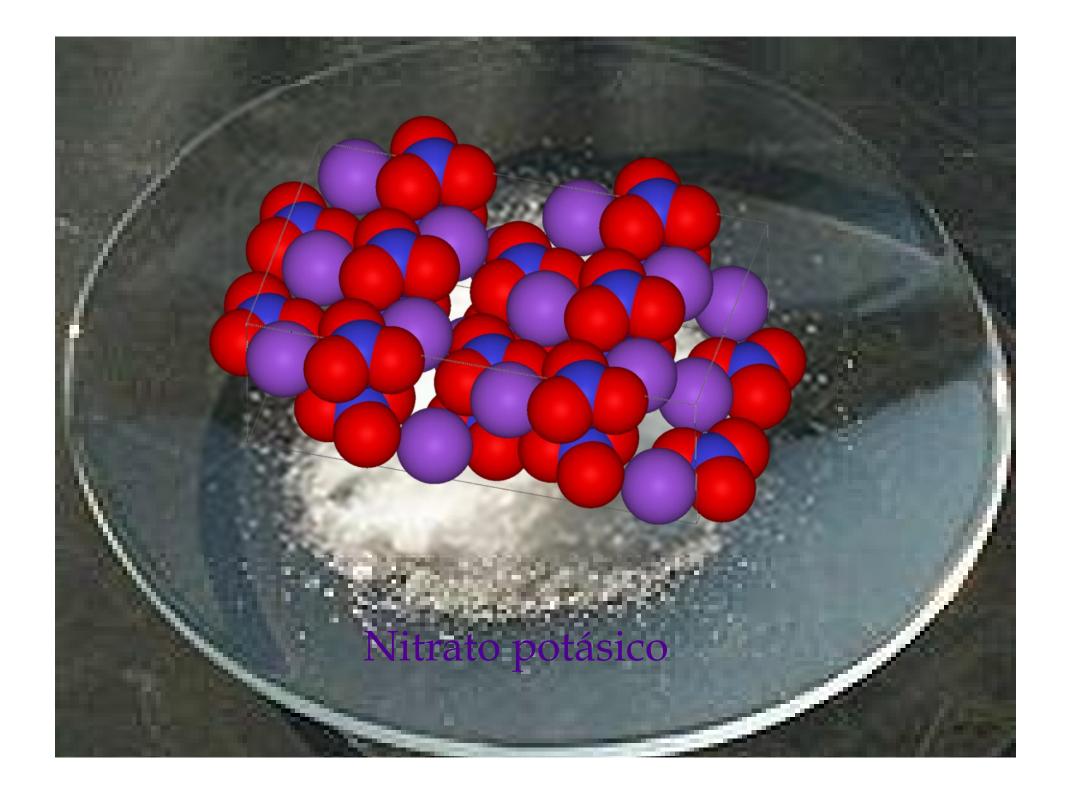
Fuente: elaboración propia

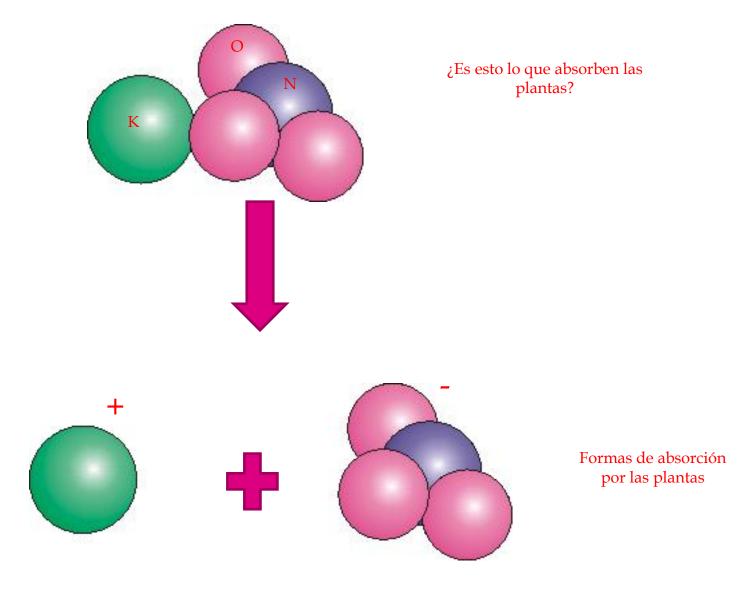
Niveles de referencia para el manejo de la fertirrigación en un cultivo de tomate en condiciones del área mediterránea y los resultados esperados

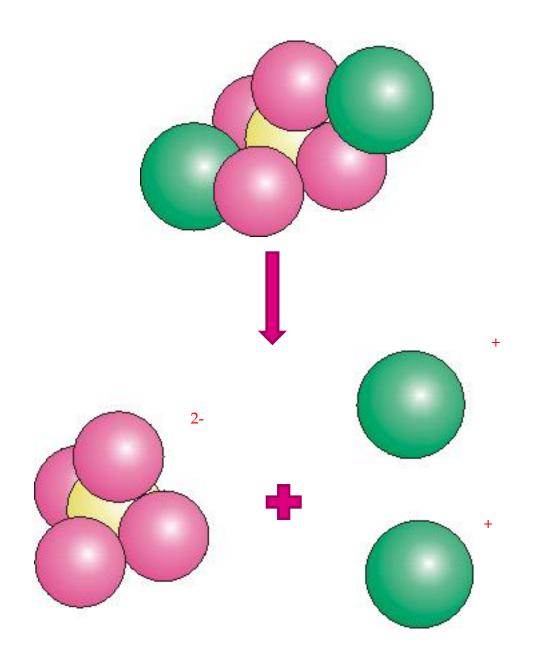
Ejemplos de niveles de referencia de disoluciones nutritivas tipos utilizadas o recomendadas en diversos cultivos hortícolas

	mmol L ⁻¹									
Fuente	NO ₃	H ₂ PO ₄	HPO ₄ ²⁻	SO ₄ ²⁻	NH ₄ ⁺	Ca ²⁺	Mg ²⁺	K ⁺	Cultivo y sistema	
Cöic-Lesaint (1983)	12,0	-	1,65	0,75	2,0	3,1	0,75	5,2	Tomate	
Sonneveld (1980)	10,5	1,50	-	2,5	0,5	3,75	1,0	7,0	Tomate. Lana de roca	
Cadahía (1995)	7,5*	2	-	3,5		4,5	1,5	7	Tomate	
Segura y Cadahía (1998)	15	2		2,5		5	1,5	9	Tomate y pimiento	
García y Urrestarazu (1999)	12,5	2,00	-	1,75		5,0	1,80	5,0	Tomate. Perlita	
Sonneveld y Straver (1994)	15,5	1,25	-	1,75	1,25	4,75	1,5	6,5	Pimiento. Lana de roca	
Escobar (1993)	13,5	1,5	-	1,35	-	4,50	1,5	5,5	Pimiento. Perlita	
Sonneveld y Straver (1994)	16,0	1,25	-	1,375	1,25	4,00	1,375	8,0	Pepino. Lana de roca	
Sonneveld y Straver (1994)	12,0	1,25	-	1,125	1,0	3,25	1,25	5,5	Judía. Lana de roca	
García y Urrestarazu (1999)	13,5	1,75	-	1,65	-	3,25	1,75	6,0	Judía. Perlita	

^{*} En medio salino se debe incrementar según el caso hasta incluso 16 *mmol L*⁻


Relación de *kgs* o *litros* (en los ácidos) por metro cúbico de cada fertilizante a incorporar en una disolución madre 100 veces concentrada para que resulte una concentración final de 1 *me* por *litro* de cada ion nutritivo que lo forma (anión y catión)


			 /	
Fertilizante	kilogramos	Litros		
Ácido nítrico (37 %)	17,0	13,80		
Ácido nítrico (59 %)	10,7	7,80		
Ácido fosfórico (37 %)	26,5	21,20		
Ácido fosfórico (75 %)	13,0	8,20		
Nitrato potásico	10,1			
Nitrato amónico	8,0			
Nitrato cálcico (4H ₂ 0)	11,8			
Nitrato cálcico (1H ₂ 0)	9,1			
Nitrato magnésico	12,8			
Fosfato monopotásico	13,6			
Fosfato monoamónico	11,5			
Fosfato monocálcico (2H ₂ O)	11,1			
Sulfato potásico	8,7			
Sulfato magnésico	12,3			
Sulfato amónico	6,6			


Estadillo resuelto para calcular los gramos o litros a aportar de cada fertilizante comercial en función de los me L-1 requeridos de cada ion nutriente en la disolución tipo

Pf (Peso de fertilizante) = ce x Pe x vl x c, sustituyendo Pf = $0.5 \ me \ L^{-1}$ x $\underline{80} \ mg \ me^{-1}$ x $1000 \ L$ x $100 = 4.000.000 \ mg$ a añadir al tanque de 1000 litros; Pf = $4 \ kg$ serán los que tengamos que pesar para nuestro caso

HCO ₃ -		Cationes (me L ⁻¹)				Total de		
Aniones (me L ⁻¹)	3 Agua de riego	NH ₄ ⁺	K⁺	Ca ²⁺	Mg ²⁺	cada anión	Fertilizante a utilizar	Peso (kg) o litros (ácidos) a utilizar para 1000Lconcentrada 100 veces
NO ₃ -		0,5	-	-	-	10,5	Nitrato amónico ⁽¹⁵⁾	4,0 ⁽²¹⁾
		-	0,5	-	2	N	itrato potásico y magnés	sico 1
		-	-	7,5	-		Nitrato cálcico ⁽¹⁷⁾	8
H ₂ PO ₄ -		-	1,5	-	-	1,5	Fosfato potásico ⁽¹⁸⁾	
H ₂ PO ₄ - SO ₄ 2-		-	5,0	-	-	5,0	Sulfato potásico ⁽¹⁹⁾	
				-			volver	
Total de cada catió	on (0,5	7,0	7,5	2,0	17,0		Total:($kg \circ L$) = 1

Información del producto

ANALÍTICA	UNIDAD	TÍPICO	ESPECIFICACIONES		
ANALITICA	ONIDAD	TILLEO	Min.	Max.	
Nitrógeno Total (N)	%	13.5	13.1	13.8	
Nitrógeno Nítrico (N-NO ₃)	%	13.5	13.1	13.8	
Óxido de Potasio Soluble en agua (K ₂ O)	%	46.5	46.2	46.7	
Potasio Soluble en agua (K)	%	38.6	38.4	38.8	
pH (Solución al 10%)		9.0	6	11	
Humedad	%	0.12	-	0.16	
Insolubles en agua	ppm	350	-	700	
Sodio (Na)	ppm	150		300	

Haifa Chemicals Ltd.

