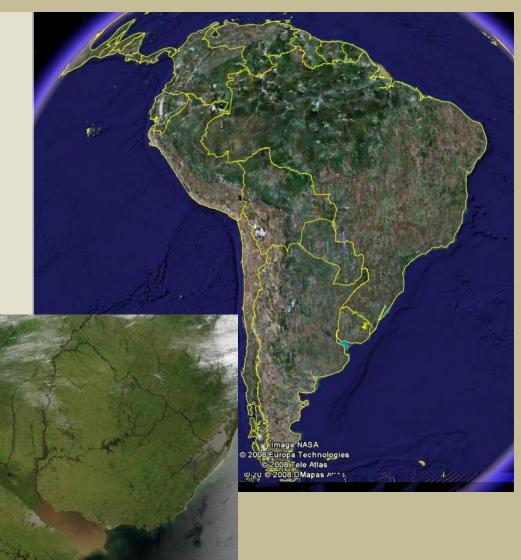
SOIL USE INTENSITY EFFECTS ON SOIL ORGANIC CARBON IN NO-TILL CROP-PASTURE ROTATION SYSTEMS

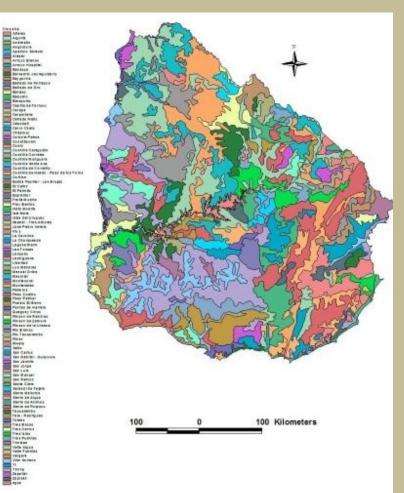
José A. Terra Ignacio Macedo G. Cantou


3er Inter-Regional CIGR Conference on Land and Water Challanges,Colonia-Uruguay 28-30 Sept-2015

Intro: Uruguay Location and Climate

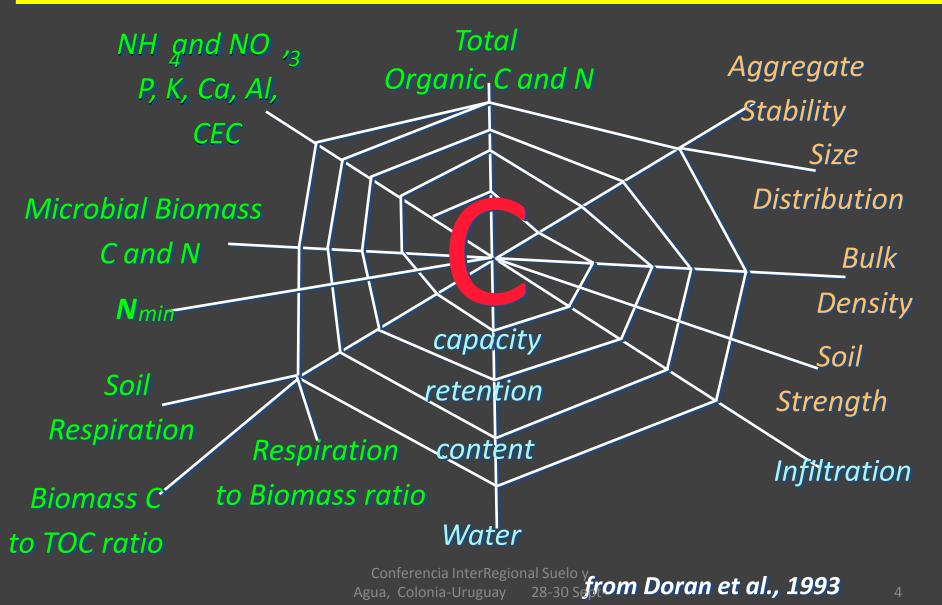
- AREA: 176 215 km².
- Lat. 30-35°S. Long. 53-58°W.
- •Temperate Climate
 - Annual Rainfall:
 - 1100mm (±200mm) (Similarly distributed) (High variability)
 - Mean Temp:
 - 24°C Summer (± 2°C) 12°C Winter (± 1.5°C)

nferencia InterRegional Suelo y , Colonia-Uruguay 28-30 Sept-2015

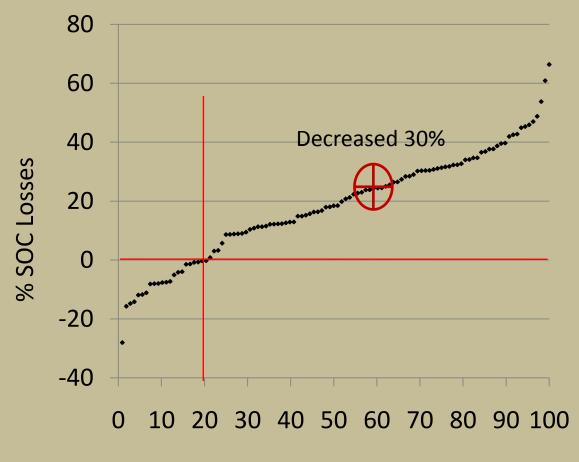

Intro: Uruguay Ecosystem and Soils

•Ecosystem:

Grasslands associated with Riverside shrub forest


- Topography: Rolling Plains Low hills
- Soils (95% agricultural):
 Mollisols
 Vertisols
 Alfisols
 Ultisols, Inceptisols,
 Histosols, Entisols
- No Fossil Fuels

65% of the territory remains under natural grasslands used for beef and wool production under grazing



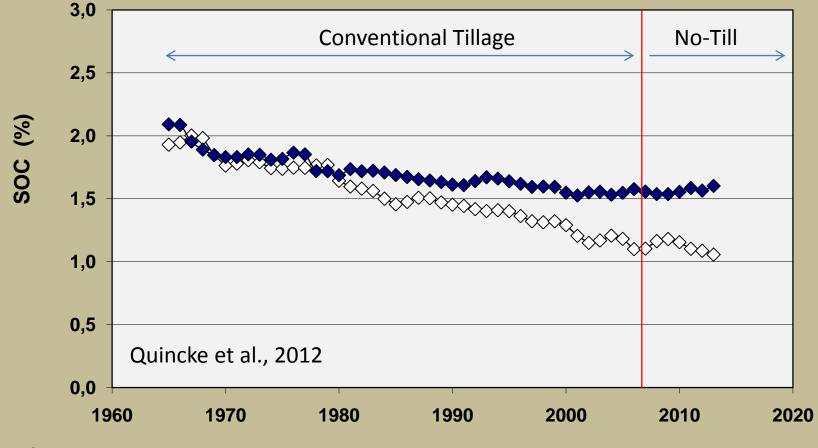
Intro: Soil C as a basis of Soil Quality/Productivity

2015

Intro: Relative SOC content in Uruguayan Soils under cropping

% of Sites

Morón et al. 2011


Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-

2015

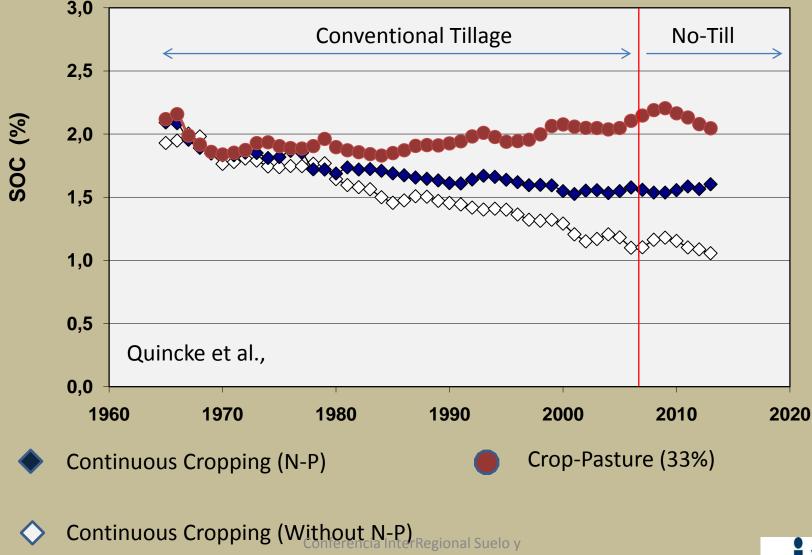
INTRO: What did we lern from our old term experiments?

Continuous Cropping decreased SOC in Conventional Tillage

Agua, Colonia-Uruguay

28-30 Sept-

Continuous Cropping (N-P)



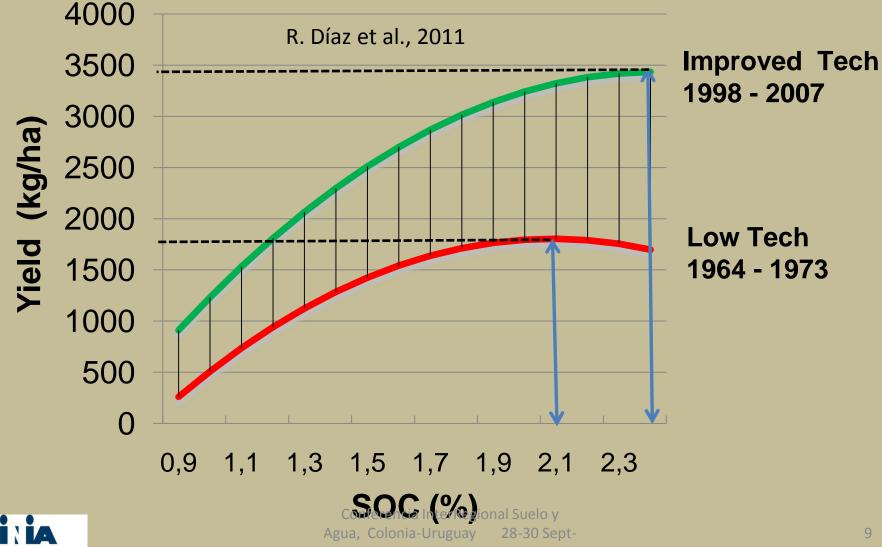
Continuous Cropping (Without N-P) Conferencia InterRegional Suelo y

INTRO: What did we lern from our old term experiments?

Crop-Pasture rotations maintained SOC in Conv. Tillage

Agua, Colonia-Uruguay

28-30 Sept-


Instituto Nacional de Investigación Agropecuar

INTRO: What did we lern from our old term experiments?

Pastures impacts on SOC were proportional to its time in rotation

Intro: Soil organic C content impact on wheat productivity



Instituto Nacional de Investigación Agropecuaria

The hypothesis (1994):

 Matching no-till technology and crop-pasture rotations may allow sustainable agricultural intensification systems in type III and IV USDA soil use capacity classes covered by natural grasslands.

Objective

 Evaluate soil use intensity impacts on soil organic C content in forage crop based and grain crop based rotations under no-till.

Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-2015

M&M: Treatments No-Till Soil Use Intensities for FORAGE (1995):

A HEVALLEN STORESS AND A	the second s					
SOIL USE INTENSITY	Yr1	Yr2	Yr3	Yr4	Yr5	Yr6
Continuous Cropping	Oat - Sudangrass	Ryegrass- Foxtail Millet				
Crop-Pasture Rotation (Short: 2-2)	Oat - Sudangrass	Ryegrass- Foxtail Millet	Pasture	Pasture		
Crop-Pasture Rotation (Long: 2-4)	Oat - Sudangrass	Ryegrass- Foxtail Millet	Pasture	Pasture	Pasture	Pasture
Permanent Improved Pasture	Pasture	Pasture	Pasture	Pasture		

Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-2015

M&M: Treatments No-Till Soil Use Intensities for GRAIN (2005):

SOIL USE			(Meine)			
INTENSITY	Yr1	Yr2	Yr3	Yr4	Yr5	Yr6
	Sorghum -	Soybean-				
Continuous Cropping	Oat	Wheat				
Crop-Pasture Rotation	Oat-	Oat -	Wheat/			
(Short: 2-2)	Sorghum	Soybean	Pasture	Pasture		
Crop-Pasture Rotation	Oat-	Oat -	Wheat/			
(Long: 2-4)	Sorghum	Soybean	Pasture	Pasture	Pasture	Pasture
Permanent Improved						
Pasture	Pasture	Pasture	Pasture	Pasture		

Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-2015

M&M: Experiment highligths

- Field Scale (72 ha, 3 ha plots)
 - Direct Grazing with animals.
 - Use of Commercial Equipment & management
- All phases of the rotation are present each yr.
- No synchronic reps.

Ruta 19

- Undergraded soils under Natural Grasslands
- No-Till

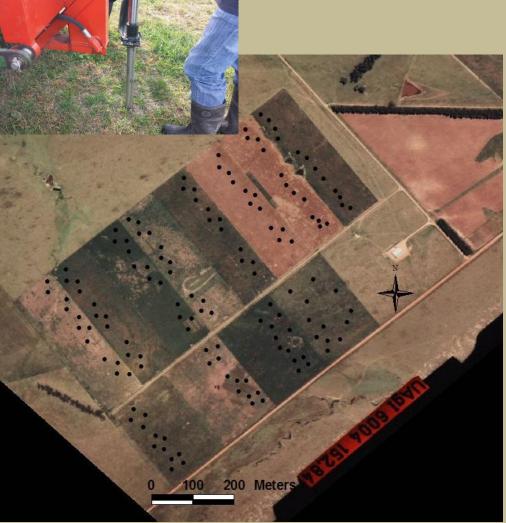
lmage © 2015 CNES / Astrium terRep © 2015 Google

Fechas de imágenes: 10/6/20

3°15'45.73" S 54°29'20.95" O ele

M&M: Soils at the experiment

• NSCS-USDA Soil Taxonomy (Uruguay Site 13)


•Abruptic Argiaquolls (in the Summit and shoulder)

•Oxiaquic Vertic Argiudolls (in the back and foot slope)

Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-

M&M: Soil Sampling and Analysis

• Sampling every year.

•Depths:

- •0-5 cm, 5-15 cm, 15-30 cm
- •12 georefrenced sites/paddock.
- •3 Topographic positions/paddock
- •.4 sites/topographic position.
- •10 composited samples/site (10m radio) .
- •C-POM (physical fractionation).
- •Total C and N: Dry combustion LECOR CN-2000.

RESULTS:

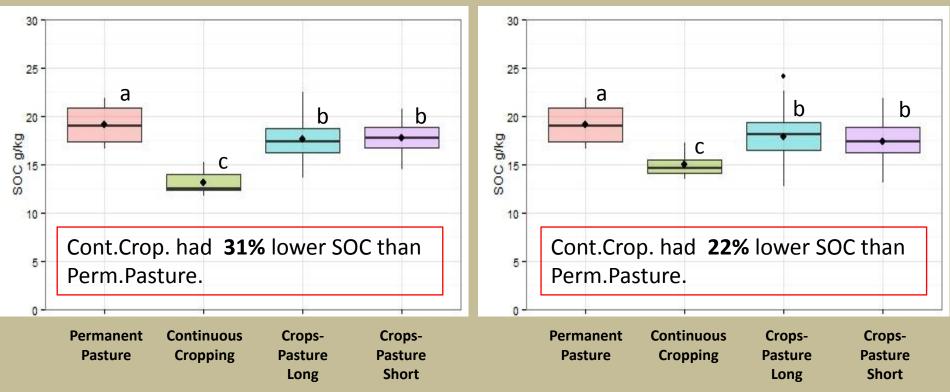
SOC (0-15-cm) and fractions content in different No-Till systems for Forage production (10 yr.)

(Carbone et al., 2010)	Soil Use Intensity†					
	Continuous		Crop-	Permanent	Native	
	Cropping	Pasture (Short)	Pasture (Long)	Improved Pasture	Grassland Reference	
SOC Fractions			—(Mg C ha ⁻	¹)		
Total C (<2000 μm)	30.0 d	35.8 b	34.5 b	39.1 a	40.1 a	
C-POM (2000-200 µm)	4.6 c	5.7 bc	5.8 b	6.8 b	8.7 a	
С-РОМ (200-53 µm)	3.3 c	3.6 bc	3.9 ab	4.4 a	4.3 a	
No-C-POM (< 53 μm)	22.1 c	26.5 ab	25.0 b	27.8 a	27.1 a	

No SOC differences were observed between Improved Pastures and Native Grasslands

Continuous Cropping had 23% lower SOC and 29% lower C-POM than Permanent Pasture.

Crop-Pasture rotations had 10% lower SOC and 15% lower C-POM than Permanent Pasture.


Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-2015

RESULTS:

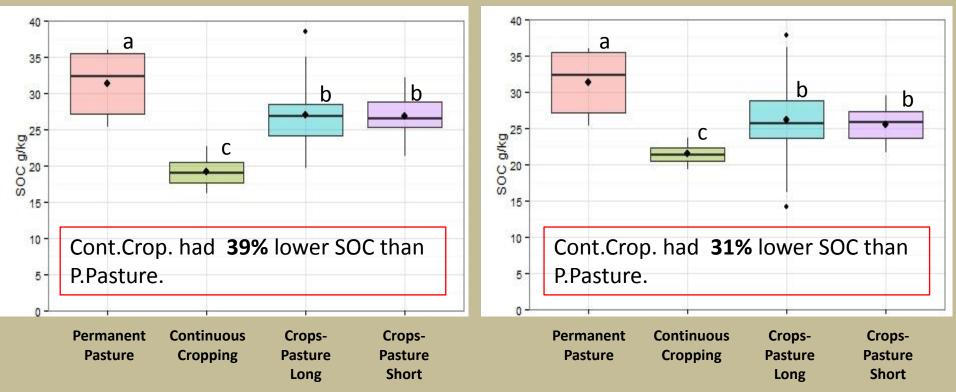
Soil Use Intensity impacts on SOC (**0-15 cm**) in forage and grain crop based rotation systems (20 yrs)

FORAGE CROPS BASED

GRAIN CROPS BASED

Crop-Pasture Rotations had 8% lower SOC than Permanent Pasture but significant higher SOC than continuous cropping; particularly in **forage systems**

Conferencia InterRegional Suelo y

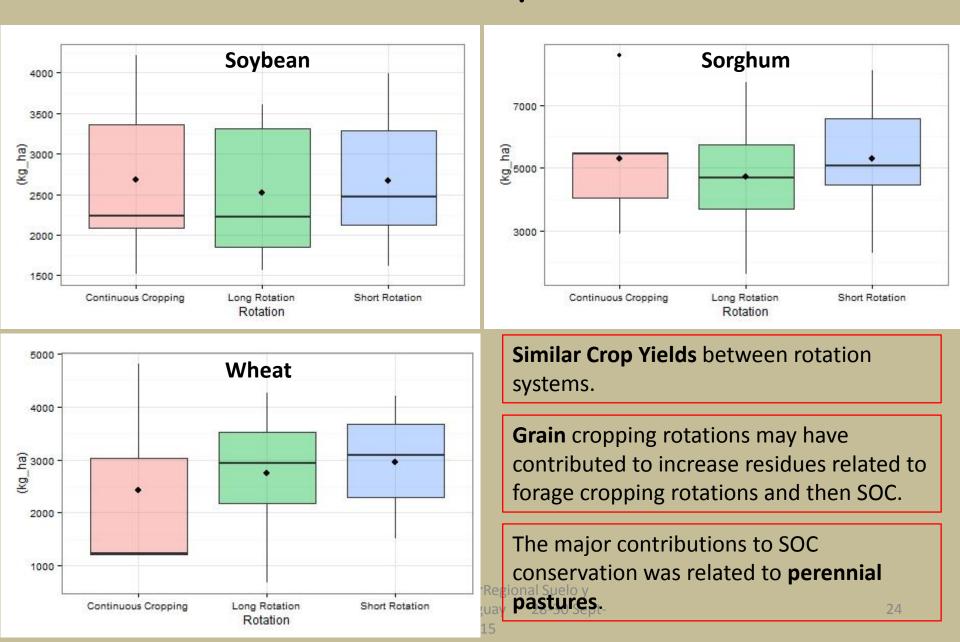

Agua, Colonia-Uruguay 28-30 Sept-

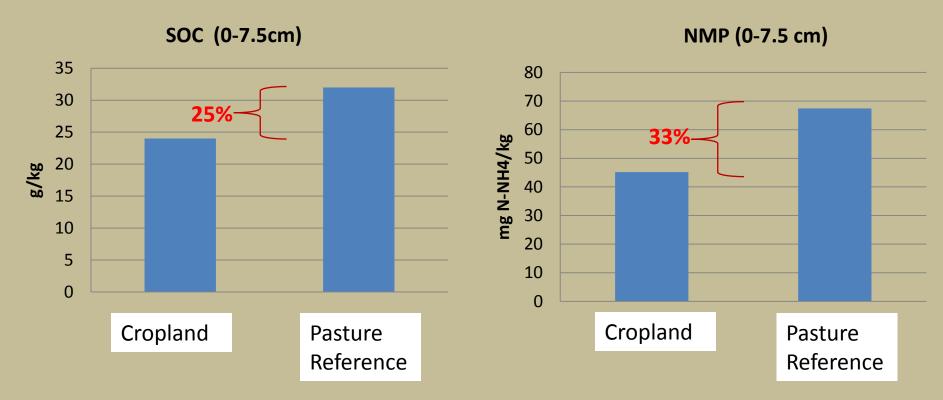
RESULTS:

Soil Use Intensity impacts on SOC (**0-5 cm**) in forage and grain crop based rotation systems (20 yrs)

FORAGE CROPS BASED

GRAIN CROPS BASED


Crop Pasture Rotations had 15% lower SOC than P.Pasture.


Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-2015

Results: Crops Yields

Commercial Fields with similar undisturbed soils after 5 yrs of continuous Soybean-Wheat-Soybean under No-Till

N=6. (Quincke and Pérez-Gomar, up)

Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-

201

Conclusions

- 1. Continuous cropping significantly reduces SOC in undisturbed soils incorporated to agriculture under no-till, and this impact is higher in intensive forage systems.
- 2. Even under no-till and integrated with pasture rotations, cropping systems reduced SOC compared with permanent pastures.
- 3. For undisturbed Mollisols incorporated to cropping systems, like those prevalent in Eastern Uruguay, rotating with perennial pastures is critical to mitigate SOC losses during cropping phases of the rotation.

Instituto Nacional de Investigación Agropecuaria U R U G U A Y

THANKS

Conferencia InterRegional Suelo y Agua, Colonia-Uruguay 28-30 Sept-

2015