

Modeling vadose zone and water table interactions at field scale in the Lower Mondego Valley, Portugal

Manuel Nunes ^{1,2} José M. Gonçalves ^{1,2} Tiago B. Ramos ^{1,3} João L.M.P. de Lima ⁴ Luis S. Pereira ¹ ¹ LEAF, Institute of Agronomy, University of Lisbon, Portugal ² Polytochnic Institute of Coimbra, Collogo of

² Polytechnic Institute of Coimbra, College of Agriculture, Portugal

³ Technical High Institute, University of Lisbon, Portugal

⁴ Department of Civil Engineering, Faculty of Science and Technology, University of Coimbra, Portugal

Objectives

- Study hydrological flows of capillary rise and drainage in the vadose zone at field scale
- Model groundwater dynamics and its relationships with irrigation management
- Use calibrated model to test irrigation scheduling scenarios, in order to control excess irrigation

Objectives

Lower-Mondego Irrigation District is located in the Centre-West of Portugal Total irrigated area around 12600 ha Main crops: maize and paddy rice Surface irrigation systems Groundwater table generally shallow rising throughout the crop season (due to paddies and irrigation excesses)

Model links

MATERIALS AND METHODS HYDRUS MODEL

Soil water dynamics relationship

Richards equation

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[K(h) \frac{\partial h}{\partial z} - K(h) \right] - S(z,t)$$

- θ volumetric soil water content [L^3 L^-3]
- h pressure head [L],
- K hydraulic conductivity [L T⁻¹]
- S sink term accounting for water uptake [L³ L⁻³ T⁻¹]

MATERIALS AND METHODS HYDRUS MODEL

Unsaturated soil hydraulic properties

van Genuchten-Mualem equations

$$\theta(h) = \theta_r + \frac{\theta_s - \theta_r}{[1 + |\alpha h|^{\eta}]^{1 - 1/\eta}}$$
$$K(h) = K_s \frac{\left[(1 + |\alpha h|^{\eta})^{(1 - \frac{1}{\eta})} - |\alpha h|^{\eta - 1} \right]^2}{(1 + |\alpha h|^{\eta})^{(1 - \frac{1}{\eta})} (l + 2)}$$

 θ_r - residual soil water content [L3L3]

 θ_{s} - saturated soil water content [L^3L^-3]

K_s - saturated hydraulic conductivity [L T⁻¹],

, y - empirical shape parameters

Modeling vadose zone and water table interactions at field scale in the Lower Mondego Valley, Portugal

Groundwater system fluxes

Darcy Equation (three dimensional groundwater flow)

$$\frac{\partial}{\partial x}\left(K_{xx}\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K_{yy}\frac{\partial h}{\partial y}\right) + \frac{\partial}{\partial z}\left(K_{zz}\frac{\partial h}{\partial z}\right) - W = S_s\frac{\partial h}{\partial t},$$

- K saturated hydraulic conductivity along x, y, z coordinates [L T⁻¹]
- h potential head [L]
- W volumetric flux [L³T⁻¹]
- S_s specific storage of porous material [L⁻¹]

MODFLOW packages used:

• Recharge - rain the irrigation deep percolating to the groundwater system

• Drain - removing water from the aquifer to drainage ditches

• Evapotranspiration – demand from groundwater to evapotranspiration (through capillary rise flux)

• General-head conditions - flows into field area from drainage ditches and rice paddies with high level

Experimental field schema

Total area: 4.0 ha (200 x 200 m)

MATERIALS AND METHODS Field observations

Models calibration:

HYDRUS

Soil Hydrodynamic Parameters of van Genuchten-Mualem eqs. Root absorption model (Feddes) parameters

MODFLOW

Groundwater hydraulic parameters Groundwater boundary conditions

Calibration methodology:

- Hydrodynamic parameters from laboratory
- Hydrodynamic parameters pedotransfer functions (Rosetta)
- Parameters from inverse modeling

- Observation with TDR
 ____ Simulation with parameters from laboratory
- Simulation with parameters from pedotranfer function
 Simulation with inverse modelling

Modeling vadose zone and water table interactions at field scale in the Lower Mondego Valley, Portugal

HYDRUS calibrated parameters

	Depth (cm)			
Parameter	20	40	70	100
<i>θ</i> , (m³ <i>m</i> ⁻³)	0.022	0.006	0.002	0.007
<i>θ₅</i> (m³ <i>m</i> ⁻³)	0.438	0.426	0.376	0.408
Bulk density (g cm ⁻³)	1,347	1.417	1.591	1.617
<i>К<u>,</u></i> (ст d ⁻¹)	623.4	287.8	748.9	15.68
lpha (cm ⁻¹)	0.196	0.135	0.125	0.010
η(-)	1,095	1.186	1,257	1.026
1(•)	-1.0	-1.0	-1.0	-1.0

MODFLOW calibration results

Measured and simulated values of groundwater depth

- Observation in piezometric tubes
- -- Simulation with parameters from laboratory observations
- - Simulation with using inverse modeling and ajusting hydraulic condutance Modeling vadose zone and water table interactions at field scale in the Lower Mondego Valley, Portugal <u>1</u>

Modeling water saving scenarios

Scenarios:

- •Farmer management (field observed, with 4 irrigation events)
- •Water saving with 3 irrigation events, using the field observed irrigation depth, aiming:
 - Minimizing water excess in the cropping season
 - •Keeping water storage at ideal levels to get maximum yield

Soil water storage modeling

4 irrigation events (farmer management) 3 irrigation events (water saving)

Water storage at ideal during all season

Modeling vadose zone and water table interactions at field scale in the Lower Mondego Valley, Portugal

Fluxes in vadose zone

Importance of capillary rise fluxes

3 irrigation events (water saving)

Groundwater level modeling

DISCUSSION AND CONCLUSION

Combination of HYDRUS and MODFLOW models may be an important tool for simulate different scenarios of irrigation management

The calibration of these models is determinant

DISCUSSION AND CONCLUSION

The adequacy of Rosetta pedotransfer functions for HYDRUS calibration is questionable in the field conditions observed

The use of soil hydraulic parameter measured in the laboratory is a first step to HYDRUS calibration, followed by the inverse modeling

MODLOW calibration has an added difficulty due to the adjustment of the boundary conditions

Modeling results led to predict that water use could be improved by adjusting the irrigation schedule

Gracias Thank you