

Fitting a numerical model for the analysis of the wet bulb dimensions by drip irrigation

Maria T. Sastre¹, Luis Silveira², Pablo Gamazo³

¹Civil Engineer, Master of Science student at the Institute of Fluid Mechanics and Environmental Engineering, Universidad de la República, Montevideo, Uruguay)

²Professor G5, Department of Hidrology, Institute of Fluid Mechanics and Environmental Engineering, Universidad de la República, Montevideo, Uruguay)

³ Civil Engineer, PhD in Hydrogeology, Associate Professor G4, Water Department, North Litoral Regional University Center, Universidad de la República, Salto, Uruguay).

INTRODUCTION

Drip Irrigation. Efficient system and sustainable management of water resource only if:

- Soil-water-plant relationship
- Hydraulics of the system
- Materials and setup

High level of management in 3 aspects Soil-water-plant relationship

- •Irrigation frequency and flow
- Weather
- (Evapotranspiration)
- •Hydraulic properties of soil
- •Structure and texture

- Data generation
- Prediction tools

WET BULB DYNAMICS

INTRODUCCION

Factors affecting the efficiency of drip irrigation in Uruguay

Limited access to information

Designs based on foreign experiences, hardly applicable to local soils and crops.

Percolation water and soil structure phenomena, not reaching bulb overlapping Tools for predicting characteristics of the wet bulb and its dynamics.

Numerical modeling tools for prediction

Experimental data generation

METHODOLOGY – Experimental Field

Lat: 34º 39'50.17"S Long: 56º 19'43.23"O Elevation: 45 m

Soils:	Horizon	Depth(cm)	Sand (%)	Silt (%)	Clay (%)	Texture
	Α	0-25	13	64	23	Silty loam
	В	25-65	8	33	59	Silty clay loam
	С	65- +	7	36	57	Silty clay loam

Activity period: December 20th, 2013 - June 4th, 2014.

METHODOLOGY – Experimental Field

- 1- Controlled conditions: Boundary conditions, drainage, pluviometry.
- 2-Instrumental
- Lysimeter (radius=0,6m; height=1,2m),
- 8 Digital Tensiometers STW-6 and 6 analog tensiometers, placed at different radius and depths
- Data Logger: Delta-T Devices Ltd.
- Irrigation equipment: ½ inch HDPE pipes, pumping pressure of 10 m. Selfcompensating drippers of 2 L/h

METHODOLOGY – Experimental Field

- Neutron sonde, CPN 503, (Campell Pacific Nuclear corp, CA, USA).
- **3-Measured Parameters:**
- Matricial head (hPa): every hour
- Drainage volume (L): At the end of every treatment
- Agroclimatics variables: Weather Station (DAVIS LB – Vantage). Real time data for evapotranspiration. (Penman- Monteith, FAO 56 for 1 hour)
- Water *Content* (θ): 3 times a day, (Abril 1st 2014 – May 19st de 2014)

Irrigation treatment: 2L1h, 2L2h, Lp1h/4L1h, 4L2h, 4Lp1h/8L1h, 8L2h, 8Lp1h

METHODOLOGY - Characteristics Curves

METHODOLOGY- The Physical model

CONCEPTUAL SCHEME

Phase Model from an elementary volume of unsaturated soil

$$\implies \frac{\partial \theta}{\partial t} = \nabla \bullet \big(K(h) \nabla(H) \big) - S$$

Conceptual Scheme simplifications

- Homogeneous Horizons Axysimetry (y axis) => 3D problem
- Not considered thermodinamic and soil mechanical processes
- Not considered hysteresis processes

METHODOLOGY- Numerical model (Code Bright)

1- UPC, Barcelona, Spain, 1994- *Resolve* thermo-hidro-mechanics (THM), 2D and 3D problems, saturated and no saturated media, transient flow. Finit elements for the numerical scheme for space discretization and finit difference for time discretization. Fortran Cod.

- 2- Richards Equation for water balance.
- **3-Constitutive laws :**
- Retention Curve: Van Genuchten model

Pg=0, P=1/ α (m); Pl=h(Mpa), λ =m

• Intrinsic permeability: Kozeny's model :

 ϕ_o : reference porosity; k_o : intrinsec permeability for ϕ_o

• Relative permeabilty: Van Genuchten model:

$$\frac{\partial \theta}{\partial t} = \nabla \bullet \big(K(h) \nabla(H) \big) - S$$

$$S_{e} = \frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}} = \left(1 + \left(\frac{P_{g} - P_{l}}{P}\right)^{\frac{1}{1 - \lambda}}\right)^{\lambda}$$

$$k = k_o \frac{\phi^3 (1 - \phi_o)^2}{(1 - \phi_o)^2 \phi_0^3}$$

$$K_r = \sqrt{S_e} \left[1 - (1 - S_e^{1/\lambda})^{\lambda} \right]^2$$

METHODOLOGY- Numerical model (Code Bright)

Flow conditions

- **EvT:** Evapotranspiration root zone: 40cm. Reference Crop: Alfalfa
- **Q**_{riego}: One central dripper

Boundaries Conditions

- Seepage: drenaje only in saturation state
 h>= 0hPa (saturación)
- ---- No-flow condition: lateral boundaries

Initial Condicitions

Initial pressure head was set for each influence área for the tensiometer and for each irrigation treatment.

Calibration Parameters

- Intrinsic Permeability, (kx, ky=kz)
- VG- Curves Parameters (α, m)
- Relative Permeability (λ)

RESULTS AND ANALYSIS- Calibration T 4L1h

RESULTS AND ANALYSIS- Calibration

	ERM (%)						
Treatment	347	283	223	110	104	86	
2L1h	ND	36,4	31,9	2,6	ND	16,5	
2L2h	13,1	ND	31,7	5,6	ND	3,1	
2Lp1h	15,3	12,8	7,4	70,8	22,18	62,3	
4L1h	14,2	3,8	8	9,6	7,3	2,4	
4L2h	8,4	4,7	8,7	1,2	2,6	2,3	
4Lp1h	9,03	6,2	4,4	5,6	ND	4,5	
8L1h	18,9	15,3	21,5	41,2	9,7	29,6	
8L2h	10,6	10,7	12,6	2,5	3,8	31,3	
8Lp1h	5,7	2,2	9	3,6	1,02	24,4	

ERM < 30% => acceptable

ND= No Data

- out of service tensiometer.
- **8** operating tensiometer.

RESULTS AND ANALYSIS – Retention Curve

RESULTS AND ANALYSIS – Intrinsec Permeability

RESULTS AND ANALYSIS – Wet bulb estimation

Tratamiento	1ª /	Aplicacio	ón	Fin período de riego			N° de aplicacion es
	R _{max} (cm)	h _{Rmax} (cm)	h _{max} (cm)	R _{max} (cm)	h _{Rmax} (cm)	h _{max} (cm)	
2L1h	7	5	25	8	5	25	3 d
2L2h	10	25	30	12	25	35	3 d
2Lp1h	10	10	31	14	30	43	6/3d
4L1h	17	0-25	50	17	30	50	2d
4L2h	20	22	52	20	22	52	1d
4Lp1h	17	0	18	18	0	21	2/ 1d
8L1h	21	27	55	17	30	50	2d
8L2h	35	15	57	35	15	57	1d
8Lp1h	23	25	37	27	25	51	2/1d

For Silty loam and silty clay loam soils with irrigation flows4L/h y 8L/h

RESULTS AND ANALYSIS – Wet Bulb estimate

paso 0.001 Areas coloreadas de Liq.Pres..

paso 5820 Areas coloreadas de Lig.Pres..

CONCLUSIONS

- Calibrated model for the analysis of wet bulb dimensions for typical soils of the center-south of the country (silty loam and silty clay loam).
- Lowers radius and more depths than the obtained by the literature for clay soils (Bresler, 1977; Keller y Bliesner, 1990; Pizarro, 1990; Zazueta, 1992)

Calibration parameters shows a evolution to more water retention capacity of soil, but in all cases below than the theoretical values

Improve microscale phenomena (thermodynamics, hysteresis, soil mechanicals)

