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Abstract 
The objective of this study was to check the quality of single-step GBLUP (ssGBLUP) 
predictions in Uruguayan dairy cattle, with special focus on the modelling of missing pedigree 
defined as metafounders (MF). A second objective was to use different estimators to compute 
relationship matrix among MF (Γ). Five strategies followed to fit unknown parent groups 
(UPGs) in ssGBLUP were: i) MF using original Γ; ii) MF with modified Γ based on the 
median of elements in original Γ; iii) MF bounding base allelic frequencies of markers between 
0 and 1 before computing Γ; iv) UPG in A-1 and v) UPG in H-1. Estimated Γ with restricted 
allele frequencies gave less biased and more accurate genomic predictions. Future studies are 
warranted in the definition of Γ and UPGs to improve quality of genomic predictions and 
understand the origin of bias.  
 
Introduction 
Uruguayan dairy herds are creators of genetic progress through selection but are also heavy 
importers of foreign genetics. Use of genomic predictions is important as producers start using 
it, so it is important to ascertain the quality of these predictions. Genomic predictions can be 
done by ssGBLUP but it is challenging to include UPGs due to their specific structure. The use 
of UPGs in genomic model evaluations may lead to bias in genomic enhanced breeding values 
(GEBV) and reduce convergence speed in ssGBLUP (Misztal et al., 2013; Tsuruta et al., 2013). 
The application of MF theory (Legarra et al., 2015; García-Bacino et al., 2017) could be an 
alternative to fit missing pedigree in a genomic evaluation model and help to overcome bias 
and convergence problems. However, Γ may give estimation problems, for instance when 
genotyped individuals have a weak bond with UPGs (Lourenco et al., 2020). Another important 
issue in the Uruguayan genetic evaluation is the restricted capacity to perform large progeny 
tests. Therefore, we need to define statistics that measure bias and accuracy of genomic 
predictions. Predictability is a major problem in dairy cattle genomic evaluations, because large 
differences between GEBV and EBV after progeny test were reported (Bradford et al., 2019). 
Thus, the linear regression method (Legarra and Reverter, 2018), commonly known as LR, 
could be a useful tool to assess the predictive ability and accuracy of genomic predictions. The 
objective of this study was to check the quality of ssGBLUP predictions in Uruguayan dairy 
cattle, with special attention to the modelling of missing pedigree defined as MF. A second 
objective was to use different estimators to compute gamma relationship matrix among MF.  
 
Materials & Methods 
 
Data. Data consisted of milk yield records from one to five lactations that were used for the 
Uruguayan Holstein genetic evaluation in April 2021. A total of 1,031,174 records were 
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available for 367,423 cows. The pedigree file included 578,172 animals and was created by 
tracing back three generations of ancestors of either cows with lactation records or genotyped 
animals. In total, 18 UPGs were defined based on sex, origin (foreign, national) and birth year. 
Genotypes for 5573 animals were available, 3499 were generated using the ICBF_IDBv3 50k 
panel and 2074 genotypes of bulls were provided by international cooperation. After quality 
control, 39,288 SNPs were analysed. Cows had the largest number of genotypes in the sample 
(3275) and more than 95% had at least a single lactation record. They were born between 1993 
and 2019, and 263 of the cows had both parents genotyped whereas 1297 had one parent 
genotyped. Genotyped bulls (2298) were born between 1973 and 2019, and 36 bulls had both 
parents genotyped and 1181 bulls had one parent genotyped. Most of genotyped animals had 
both parents known. 
 
Models. Milk adjusted 305-d yield was analyzed in a single-trait repeatability animal model to 
obtain GEBV using ssGBLUP (Aguilar et al., 2010; Christensen and Lund, 2010). The basic 
model included fixed effects of herd year season (n=54,274) and age-parity-calving interval-
dry period (n=118). The random effects were the additive genetic effect (n=578,190) and the 
permanent environmental effects (n=423,317). Data included up to five lactation records. 
Matrix H-1 was defined as in Aguilar et al. (2010). Genomic relationship matrix (G) was 
computed by the first method of VanRaden (2008); and blended with default parameters as 
G*=0.95*G + 0.05*A22. To make G and A22 compatible, we used default tuning in BLUPF90 
(Misztal et al., 2018). To fit UPG five methodologies were applied: ssGBLUP with MF using 
original Γ  (MFO model), ssGBLUP with MF using gamma-robust estimator (MFGrob 
model), ssGBLUP with MF using gamma-complete estimator (MFBou model), ssGBLUP with 
UPG in A-1 (PED model), and ssGBLUP with UPG in H-1 (EXA model). For MF models, each 
UPG was regarded as a MF, i.e., a different ancestral population, and original Γ was computed 
by generalized least squares using observed genotypes (García-Bacino et al., 2017) and for each 
MF we calculated the base allelic frequencies. Additionally, the gamma-robust estimator 
designed Γ with two different values based on the original Γ. The diagonal elements of Γ had 
the median of all self-relationships, whereas the off diagonals contained the median of all 
relationships across MF. The complete gamma estimator bounded base allelic frequencies of 
markers between 0 and 1 before computing Γ. Values in Γ-1 were included in the numerator 
relationship matrix A(Γ)-1, as previously defined (Legarra et al. 2015). The PED model fitted 
UPGs as a fixed effect into ssGLBUP equations and they were included into the pedigree-based 
numerator relationship matrix A-1 by QP-transformation (Quaas and Pollak, 1981). The EXA 
model considered UPGs as a random effect into ssGLBUP equations and they were 
implemented in both A-1 and G-1 (Misztal et al., 2013).  
 
Validation of genomic predictions. To validate genomic predictions, we used 177 genotyped 
sires with at least 10 daughters with lactation records (valG). For those sires, we compared their 
GEBV predicted from the whole dataset (‘w’) with GEBV predicted from a partial dataset (‘p’). 
The partial dataset removed phenotypes of cows recorded after 2014, so that records of 
daughters from those sires were not considered. GEBV of sires in valG with the whole dataset 
used 23,482 lactation records of 14,167 cows, 171 of which were genotyped. All GEBV were 
expressed in relation to the mean of GEBV for cows born in 2010 and with lactation records. 
GEBVs obtained with reduced data (GEBVp) and with whole data (GEBVw) were compared 
using statistics described in the ‘LR’ method (Legarra and Reverter, 2018). Predictions of 
GEBV and estimates of UPG effects were obtained by ssGBLUP using BLUP90iod2 program 
(Tsuruta et al., 2001). The Γ was computed using gammaf90 program from BLUPF90 suite.  



 
Results 
 
Models 
The original Γ  showed higher extreme values than elements of Γ  obtained with gamma 
complete estimator (Table 1). Using the gamma-robust estimator the self-relationship of MF 
(diagonal) was 0.776 and relationship between MF (off-diagonal) was 0.641.  
 
Table 1. Statistics of estimated original Γ  (MFO) and Γ  with restricted allele 
frequencies (MFBou).  
 MFO  MFBou 
 Diagonal 

values 
Off-diagonal 
values 

 Diagonal 
values 

Off-diagonal 
values 

Minimum 0.661 -2.371  0.654 -0.259 
Median 0776 0.641  0.762 0.5911 
Maximum 6.302 1.354  1.478 0.709 

 
Except for MFO, all models converged. However, EXA (average rounds: 86), MFBou and 
MFGrob (average rounds: 89) converged faster than PED (average rounds: 190).  
 
Validation of genomic predictions. 
In Table 2, statistics of LR are described for each model, except for MFO. MBou model gave 
the lowest bias (108). All models had a slope that was far from one and it ranged from 0.672 to 
0.699 across models. Correlations between GEBVw and GEBVp were similar for models and 
doubled the accuracy of GEBVs when using whole data instead of partial data.  
 
Table 2. Bias (𝝁𝝁�𝒘𝒘,𝒑𝒑) , slope (𝒃𝒃�𝒘𝒘,𝒑𝒑)  and ratio of accuracies  (𝒑𝒑�𝒘𝒘,𝒑𝒑)  between GEBV 

estimated for each model using bulls in validation set (valG). 

 ValG   

Model 𝝁𝝁�𝒘𝒘,𝒑𝒑  𝒃𝒃�𝒘𝒘,𝒑𝒑  𝒑𝒑�𝒘𝒘,𝒑𝒑    

MFGrob 118 0.672 0.520   

MFBou 108 0.698 0.538   

PED 296 0.629 0.487   

EXA 122 0.699 0.514   

 
Discussion 
In this study, we assessed ssGBLUP for the genomic evaluation of Holstein in Uruguay and 
several methodologies were tested to include UPG in the genomic models. Bias was present in 
all models. MFBou, MFGrob and EXA models gave better genomic predictions than PED. In 
contrast, a simulated dairy cattle population, Bradford et al.,2019) obtained unbiased and 
accurate predictions with ssGBLUP and metafounders for the original Γ. Besides, Bradford et 
al. (2019) reported greatest bias and least accuracy for ssGBLUP with UPG for H in a moderate 
heritability trait. In our study a possible confounding among different UPGs could also happen 
because of a low number of animals contributing to estimate those UPGs (Misztal et al., 2013). 



Except for MFO, all models were robust and converged, but overdispersion was observed. The 
low values of slope could be partly explained by the small number of bulls in the validation set 
(177 genotyped bulls). Our study showed a greater variation of values in the original Γ than 
those estimated for dairy cattle (Legarra et al., 2015; Bradford et al., 2019). This implies that 
in the Uruguayan Holstein genetic evaluation some MF represented very different base 
populations. The gamma complete estimator computes different values for elements of Γ. 
Thus, Γ would be a better proxy to reflect relationship between UPGs and we would be able 
to obtain less bias in genomic evaluations.         
 
Conclusions 
We found that ssGBLUP was successfully implemented in the Uruguayan Holstein genetic 
evaluation. Genomic models that used metafounders with the complete gamma estimator gave 
less biased and more accurate predictions. However, the origin of bias was not completely 
understood, so future studies are warranted in the definition of Γ and of UPGs to improve 
quality of genomic predictions.  
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