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INTRODUCTION

Genomic selection in beef cattle has currently 
been performed with multistep methods, which uses 
deregressed EBV to estimate SNP effects and then 
direct genomic value (DGV) for selection candidates 
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ABSTRACT: Predictive ability of genomic EBV when 
using single-step genomic BLUP (ssGBLUP) in Angus 
cattle was investigated. Over 6 million records were 
available on birth weight (BiW) and weaning weight 
(WW), almost 3.4 million on postweaning gain (PWG), 
and over 1.3 million on calving ease (CE). Genomic 
information was available on, at most, 51,883 animals, 
which included high and low EBV accuracy animals. 
Traditional EBV was computed by BLUP and genomic 
EBV by ssGBLUP and indirect prediction based on 
SNP effects was derived from ssGBLUP; SNP effects 
were calculated based on the following reference popu-
lations: ref_2k (contains top bulls and top cows that had 
an EBV accuracy for BiW ≥0.85), ref_8k (contains all 
parents that were genotyped), and ref_33k (contains all 
genotyped animals born up to 2012). Indirect prediction 
was obtained as direct genomic value (DGV) or as an 
index of DGV and parent average (PA). Additionally, 
runs with ssGBLUP used the inverse of the genomic 
relationship matrix calculated by an algorithm for prov-
en and young animals (APY) that uses recursions on a 
small subset of reference animals. An extra reference 
subset included 3,872 genotyped parents of genotyped 
animals (ref_4k). Cross-validation was used to assess 
predictive ability on a validation population of 18,721 
animals born in 2013. Computations for growth traits 

used multiple-trait linear model and, for CE, a bivari-
ate CE–BiW threshold-linear model. With BLUP, 
predictivities were 0.29, 0.34, 0.23, and 0.12 for BiW, 
WW, PWG, and CE, respectively. With ssGBLUP and 
ref_2k, predictivities were 0.34, 0.35, 0.27, and 0.13 for 
BiW, WW, PWG, and CE, respectively, and with ssG-
BLUP and ref_33k, predictivities were 0.39, 0.38, 0.29, 
and 0.13 for BiW, WW, PWG, and CE, respectively. 
Low predictivity for CE was due to low incidence rate 
of difficult calving. Indirect predictions with ref_33k 
were as accurate as with full ssGBLUP. Using the APY 
and recursions on ref_4k gave 88% gains of full ssG-
BLUP and using the APY and recursions on ref_8k 
gave 97% gains of full ssGBLUP. Genomic evaluation 
in beef cattle with ssGBLUP is feasible while keep-
ing the models (maternal, multiple trait, and threshold) 
already used in regular BLUP. Gains in predictivity are 
dependent on the composition of the reference popula-
tion. Indirect predictions via SNP effects derived from 
ssGBLUP allow for accurate genomic predictions on 
young animals, with no advantage of including PA in 
the index if the reference population is large. With the 
APY conditioning on about 10,000 reference animals, 
ssGBLUP is potentially applicable to a large number 
of genotyped animals without compromising predictive 
ability.
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based on their genotypes (Meuwissen et al., 2001; 
Garrick et al., 2009). The main advantage of this ap-
proach is that the traditional BLUP evaluation is kept 
unchanged and genomic selection can be performed by 
a separate entity owning genotypes but not phenotypes. 
Also, new animals are easily evaluated if DGV is com-
puted as a sum of marker effects, but not if selection 
indexes including DGV and parent average (PA) are 
used.

When both phenotypes and genotypes are avail-
able jointly, single-step genomic BLUP (ssGBLUP; 
Aguilar et al., 2010) is a simple alternative. This meth-
od does not rely on deregressed proofs and properly 
weighs information from genotyped sires and cows, 
thus avoiding double counting of contributions due to 
relationships and records, and accounts for preselec-
tion bias of genomically selected parents without phe-
notypes (Legarra et al., 2014). In ssGBLUP, it is also 
possible to quickly evaluate young genotyped animals 
without running a complete evaluation that requires 
several hours to converge. Quick predictions can be 
calculated indirectly, where genomic predictions for 
young animals are obtained from SNP effects. It was 
shown by Wang et al. (2012) that SNP effects can 
be derived from genomic estimated breeding value 
(GEBV) solutions from the main ssGBLUP evalua-
tion.

In its current implementation, ssGBLUP uses 
direct inversion of genomic matrices (Aguilar et al., 
2011), which has a cubic cost and a limit of 150,000 
animals (Aguilar et al., 2013). Several methods were 
proposed to overcome that limit (Legarra and Ducrocq, 
2012; Fernando et al., 2014; Liu et al., 2014), but none 
was successful. Recently, Misztal et al. (2014a) pre-
sented a method that uses an approximate inversion of 
genomic relationships based on recursions on a frac-
tion of the total population, which can be suitable and 
inexpensive. The first goal of this study was to evalu-
ate the feasibility of ssGBLUP for genomic evaluation 
in Angus cattle with reference populations of different 
composition. An additional goal was to evaluate the 
ability to predictive GEBV with genomic recursions 
and with indirect prediction for young animals.

MATERIAL AND METHODS

Data sets from American Angus Association 
(AAA) were available for this study that included 
growth traits and calving ease (CE). Growth traits 
included birth weight (BiW), weaning weight (WW), 
and postweaning gain (PWG). As the data were ob-
tained from existing databases, Animal Care and Use 
Committee approval was not obtained for this study.

Data

Over 6 million phenotypes were available for BiW 
and WW, almost 3.4 million for PWG, and over 1.3 
million for CE. Whereas BiW, WW, and PWG are con-
tinuous traits, CE is a categorical trait with 5 calving 
scores, where 5 is abnormal delivery and is excluded. 
Because few animals had scores 3 and 4, these scores 
were combined into category 2, which resulted in 93% 
of animals with score 1 and 7% with score 2. The num-
ber of animals in the pedigree for evaluation of growth 
traits was 8,236,425 and for CE was 8,025,676.

For evaluation of growth traits, 81,878 ani-
mals were genotyped for 54,609 SNP from the 
BovineSNP50k v2 BeadChip (Illumina Inc., San 
Diego, CA). Currently, no genotyping strategy is ap-
plied by AAA; therefore, the members can choose 
which animals are being genotyped, and most of 
them are young. A total of 29,995 genotyped animals 
were young without phenotypes for any of the 3 traits, 
which caused their genotypes to be excluded from this 
study. If the number of genotyped animals is relatively 
large, young genotyped animals without phenotypes 
in the data set give very small contribution to their 
relatives’ evaluation (Misztal et al., 2014a). After re-
moving SNP with unknown position or located on 
sex chromosomes and running a general quality con-
trol analysis, genotypes on 38,528 SNP markers were 
available for 32,465 males and 19,418 females born 
from 1977 to 2013; therefore, the maximum number 
of genotyped animals used in all analyses on growth 
traits was 51,883. For CE evaluation, a genotyping set 
with 72,069 animals was available, but only genotypes 
on 40,546 animals born from 1977 to 2013 (26,074 
males and 14,472 females) were used for the same rea-
son above. The number of SNP that passed the general 
quality control for this data set was 38,568.

For this study, the animals were then split into train-
ing and validation populations according to year of 
birth. Therefore, all 18,721 (13,166) genotyped animals 
born in 2013 were chosen to be in the validation popu-
lation for growth (CE) traits and had their phenotypes 
removed from the evaluations. The pedigree relation-
ship between training and validation populations ranged 
from 0 to 0.82, with an average relationship of 0.09.

Model

Traditional and genomic evaluations were per-
formed for growth traits and CE. A multivariate linear 
animal model was used for growth traits as

yt = Xb + Z1u + Z2m + Z3p + e,      	  [1]
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in which t is for each one of BiW, WW, and PWG; y, b, 
u, m, p, and e are vectors of phenotypes, fixed effect 
of contemporary group, additive direct genetic effect, 
additive maternal genetic effect, maternal permanent 
environmental effect, and random residuals, respec-
tively; and X, Z1, Z2, and Z3 are incidence matrices 
for b, u, m, and p, respectively. All random effects 
were present for WW but only u, m, and e for BiW and 
u and e for PWG.

A bivariate threshold-linear animal model was 
used to model CE jointly with BiW:

yc = Xb + Z1u + Z2m + e, 	  [2]

in which c is for BiW and CE; y, b, u, m and e are 
vectors of phenotypes, fixed effects of contemporary 
group, sex, age of dam (only for CE), and sex × age of 
dam interaction (only for CE), additive direct genetic 
effect, additive maternal genetic effect, and random re-
siduals, respectively; and X, Z1, and Z2 are incidence 
matrices for b, u, and m, respectively. According to 
Ramirez-Valverde et al. (2001), when BiW is available, 
bivariate threshold-linear models including CE and 
BiW are a better alternative than a single-trait threshold 
model to evaluate CE, especially if the population has 
animals with different levels of EBV accuracy. From 
this model, only results for CE are discussed, whereas 
results for BiW are from the multiple trait linear model 
for growth traits. Heritabilities for all traits were cal-
culated by AAA using model [1] for BiW, WW, and 
PWG, and model [2] for CE. For our study, the values 
were then provided by AAA and ranged from 0.12 to 
0.41 (Table 1).

Analyses

Three different genomic analyses were performed 
using ssGBLUP (Aguilar et al., 2010; Christensen and 
Lund, 2010) as implemented in the BLUP90IOD pro-
gram (Misztal et al., 2014b). Compared to BLUP, in 
ssGBLUP, the inverse of the numerator relationship 
matrix A–1 is replaced by matrix H–1 defined as fol-
lows:

– 
= +

é ù
ê ú
ê úë û

-1 -1

-1 -1

22

0 0
H a

0 g a
,

in which G is the genomic relationship matrix. The 
computations used default options in BLUP90IOD. 
In all analyses, the validation population was de-
fined as genotyped animals born in 2013 with phe-
notypes excluded.

First Analysis: Single-Step Genomic BLUP with 
Different Reference Populations. Different reference 
populations were defined according to EBV accura-
cy calculated with the ACCF90 program (Misztal et 
al., 2014b), which uses the concept of prediction er-
ror variance and reflects the SE of EBV for each indi-
vidual. The objective was to investigate the influence 
of different groups of reference animals on genomic 
predictions and possibly to guide genotyping strategy. 
The current trend in livestock genomics is to genotype 
young animals; however, more important animals give 
more information to the evaluations. For growth traits 
and CE, the first reference population was composed 
of 1,628 and 1,541 top bulls, respectively, with EBV 
accuracy for BiW ≥0.85, which we will refer hereinaf-
ter as “ref_bulls.” As BiW was present in models for 
growth and CE evaluations, using its EBV accuracy for 
selecting top bulls helped to compose sets with a pro-
portional number of animals. In this case, the G matrix 
was composed of animals in the reference population 
and also animals in the validation population; the last 
had 18,721 animals for growth traits and 13,166 for 
CE. The second reference population was composed 
of the top bulls and also top cows that had an EBV ac-
curacy for BiW ≥0.85, which we will refer as ref_2k. 
The number of top cows was small and only 268 were 
added for the growth trait analysis and 323 for CE. The 
third reference population was composed of all geno-
typed animals born up to 2012 (which we will refer as 
ref_33k). This group had a total of 33,162 animals for 
growth and 27,380 for CE, with an average EBV ac-
curacy for BiW of 0.77 (±0.05). For the latter analysis, 
the G matrix was composed of the maximum number 
of 51,883 genotyped animals for growth analysis and 
40,546 for analysis of CE.

Second Analysis: Single-Step Genomic BLUP 
with Indirect Predictions for Young Animals. With 
the increasing number of genotyped heifers and steers 
in dairy and beef, the genomic methods should be 
able to provide predictions for young animals without 
phenotypes in a quick run, externally to the official 
evaluations. This concept is introduced here as indi-

Table 1. Heritability (h2) and general statistics for 
growth traits and calving ease (CE)

Trait1 h2
Number  

of records
Average, 

kg
SD,  
kg

Number of genotyped 
animals with records

BiW 0.41 6,189,661 36.47 4.45 50,784
WW 0.20 6,890,625 263.13 44.63 51,830
PWG 0.20 3,387,252 162.25 67.00 36,196
CE 0.12 1,310,684 – – 10,558
Easy – 1,215,571 – – 10,228
Difficult – 95,113 – – 330

1BiW = birth weight; WW = weaning weight; PWG = postweaning gain.



Lourenco et al.2656

rect ssGBLUP and basically mimics the mixed model 
equations. It would be advantageous from different 
perspectives: to evaluate young animals mainly for 
traits that are measured later in life, after the selection 
decisions are made, and to reduce computing costs be-
cause the dimension of G would not increase in the 
same proportion as the number of genotyped animals.

To explain how it works, consider the equation 
for the GEBV of a single individual in ssGBLUP 
(VanRaden and Wiggans, 1991; Aguilar et al., 2010):

GEBV = �w1PA + w2YD + w3PC + w4DGV– w5PP,

in which PA is parent average, YD is yield deviation 
(phenotypes adjusted for model effects other than ad-
ditive genetic and error), PC is progeny contribution, 
DGV is direct genomic value (corresponding to G–1), 
PP is the pedigree prediction based on the subset of 
genotyped animals from A (corresponding to 1

22A ), 
and w1 to w5 are weights that add up to 1. In the case 
of young animals with no progeny or own perfor-
mance record, YD = PC = 0 and w2 = w3 = 0. In this 
case, for individual i, 

PAi = (GEBVs + GEBVd)/2;

( ),
DGV  G /EBVij j ii

i j j i
g g

¹
=  ;

( )22 22,
PP GEBV /ij j ii

j j i
a a

¹
=  ; and 

w1 = 2/den, w4 = gii/den, and w5 = 22
iia /den, in which 

den is the denominator that equals ( )222 ii iig a+  ; 
ijg ( 22

ija ) is an element of G–1 ( 1
22
a ) corresponding to 

relationships between animal i and j; and s and d cor-
respond to sire and dam, respectively. If all individu-
als are genotyped, then PA = PP and GEBV is reduced 
to DGV.

For ssGBLUP with indirect predictions, SNP ef-
fects can be calculated using the current run of ssGB-
LUP with all but young animals, and genomic predic-
tions for young animals are obtained by multiplying 
the SNP content by SNP effect to obtain DGV; a more 
complete GEBV can also be available through a selec-
tion index that combines DGV and PA. The flow for 
indirect predictions in ssGBLUP is

1)	 Run ssGBLUP with a reference population to ob-
tain GEBV. In this step, 3 reference populations 
were tested:
a)	 ref_2k:  reference population with top bulls 

and top cows that had an EBV accuracy for 
BiW ≥0.85 (n = 1,896);

b)	 ref_8k: reference population with all parents 
that were genotyped (n = 8,285); this includes 
ref_2k; and

c)	 ref_33k: reference population with all geno-
typed animals born up to 2012 (n = 33,162); 
this includes ref_8k.

2)	Split GEBV into all the components shown before, 
in which DGV for an animal i in the reference 
population is calculated as below (Aguilar et al., 
2010):

( )
,

/DGV GEBVij j ii

i j j i
g g

¹
=  ,

with all elements previously defined.
3)	Calculate SNP effects using DGV from the refer-

ence population:

( ) ˆ ¢= -1u DZ G dgV ,

in which û  is a vector of estimated SNP effects, D  
is a diagonal matrix of weights (standardized vari-
ances) for SNP (identity matrix in this case), and 
Z is a matrix of centered genotypes for each ani-
mal (VanRaden, 2008). A similar approach that 
uses GEBV instead of DGV to calculate SNP ef-
fects was proposed by Wang et al. (2012). However, 
for numerical purposes this involves approxima-
tions as G matrix is formed as G = 0.95ZDZ′ + 
0.05A22 (Aguilar et al., 2010). This is done as a 
default approach to avoid singularity problems 
and may result in negligible error as shown later.

4)	Calculate DGV for young genotyped animals 
(DGVy):

ˆ
y yDGV Z u=

in which DGVy and Zy are direct genomic values 
and a matrix of centered genotypes for young 
animals not included in ssGBLUP evaluation, 
respectively.

5)	Combine DGVy with PA for young genotyped 
animals:

GEBVy ≈ w1PA + w4DGVy,

in which GEBVy is the GEBV obtained via indi-
rect predictions for young animals and w1 and w4 
are weights identical for all animals and calculated 
based on covariances between DGVy and PA as 

y

yy y

2 2
PA PA,DGV PA1

22
DGV4 DGV ,PA DGV

w
=

w
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Note that this is an approximation that ignores PP. 
In general, PP includes part of PA explained by 
DGV. When all animals are genotyped, PP and PA 
cancel out, with approximate cancellation when 
parents of an animal are genotyped. When an ani-
mal is unrelated to a genotyped population, PP = 
0. Fixed weights in the index account for an aver-
age relationship of all young animals to a geno-
typed population. It is possible to create different 
indices based on the number of genotyped parents 
(VanRaden et al., 2012).

The ssGBLUP with indirect prediction allows cal-
culation of DGV or GEBV for young genotyped ani-
mals, with lower computing cost compared to a full ss-
GBLUP where young animals are explicitly included.

Third Analysis: Single-Step Genomic BLUP 
with G Inverted by a Recursive Algorithm. When the 
number of genotyped animals is large and there is a 
desire for using all of them in ssGBLUP evaluations 
to get direct predictions for all, including young ani-
mals, an algorithm that splits genotypes into proven 
and young animals and uses recursion to approximate 
the inverse of the G matrix was proposed by Misztal 
et al. (2014a). This algorithm for proven and young 
animals is known as the APY, and G–1 containing all 
genotyped animals can be expressed as

1 1
1 1 1pp pp py

g yp pp+
 

  
é ù é ù

=
 é ùê ú ê ú ê úë ûê ú ê ú

ë û ë û

g 0 g g
g m g g i

0 0 i
,

in which the subscript pp stands for proven animals 
and py stands for the covariance between proven and 
young animals; each element of Mg is obtained (for the 
ith young animal) as 1

g,i ii ip pp pim   g   =  g g g  and is 
called genomic Mendelian sampling. In the APY, the 
only direct inversion needed is for part of G that con-
tains relationships among proven animals (Gpp), where-
as all other coefficients are obtained through recursions.

For this analysis, 4 definitions of proven animals 
were tested that included the 3 definitions used for in-
direct predictions (ref_2k, ref_8k, and ref_33k) plus 
an extra reference subset that included 3,872 geno-
typed parents of genotyped animals (ref_4k). This last 
group was added to test if proven animals would have 
strong links with the young genotyped population.

The greatest advantages of this algorithm are the 
reduction of computing cost, which is still cubic for 
proven animals but can be linear for young animals, 
and the possibility of using large numbers of geno-
typed animals in ssGBLUP evaluations. The second-
ary advantage is numerical stability, as the regular 
G matrix is singular when the number of animals is 

greater than the number of SNP markers and cannot 
be inverted without blending with A22.

Validation

The ability to predict future phenotypes was the 
validation method chosen for this study. This method 
is based on Legarra et al. (2008), and predictive abil-
ity for traditional and genomic evaluations for animals 
born in 2013 was calculated as the correlation between 
EBV or GEBV and phenotypes corrected for fixed ef-
fects (y – Xb):

r = cor[(G)EBV, y – Xb].

The predictive ability or predictivity is used as an ap-
proach to compare the methods applied in this paper. 
For all analyses, the validation groups were kept the 
same to make comparisons easier. Validations involved 
18,721 animals for growth traits and 16,133 animals 
for CE. Predictivity calculated with EBV in the above 
formula was the benchmark used to compare the gain 
in predictive ability due to genomics, and predictiv-
ity calculated with GEBV was used to compare the 
genomic methods previously described. Prediction ac-
curacy could be described as r/h, in which h is square 
root of heritability; however, prediction accuracy can 
be overestimated if heritabilities are obtained by sim-
plified models as the ones used by AAA.

RESULTS AND DISCUSSION

Single-Step Genomic BLUP with Different 
Reference Populations

Predictive ability on young animal when using 
several reference populations is shown in Table 2. 
Using only top bulls as a reference population (ref_
bulls) increased predictivity relative to BLUP by 0.05 
for BiW, 0.01 for WW, 0.04 for PWG, and 0.01 for 
CE. Addition of top cows to the reference population 
(ref_2k) did not increase the predictivity for any trait. 
This could be due to the small number of animals add-
ed and also because daughters of those cows already 
contributed through the inclusion of bulls. Addition 
of around 31,000 animals to the reference popula-
tion provided an additional increase in predictivity of 
0.05 for BiW, of 0.03 for WW, and of 0.02 for PWG. 
However, no additional increase was observed for CE 
by adding extra 27,000 genotyped animals, of which 
about 7,000 had phenotypes for that trait.

The addition of 31,000 animals with few or no 
progeny led to the same increase of predictivity as 
using only the top bulls for BiW, led to an increase 
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of 3 times for WW and an increase of 0.5 times for 
PWG. Among the 31,000 extra animals, almost all 
had phenotypes for BiW and WW but only 24,000 had 
phenotypes for PWG. Evidently, the composition of 
reference population is also a factor that influences 
predictivity of GEBV besides the reference population 
size. Therefore, genotyping strategy should take into 
account genotyping more important and maybe older 
animals with more information (higher EBV accu-
racy) along with genotyping large amounts of young 
animals.

Previous studies showed that prediction accura-
cies or predictive ability are biased downward by 
selection (Bijma, 2012). In our study, it appears that 
selection for proven bulls was much stronger for WW 
than for PWG (lower increase in predictivity with 
twice the phenotypic data at similar heritability) but 
there was a small selection on genotyped animals with 
own records (approximately twice the increase of pre-
dictivity with twice the phenotypic data). It may be 
hard to calculate the amount of bias in livestock spe-
cies, including beef cattle, as the selection process is 
sequential and affected by both genetic correlations 
and specific indexes used for selection.

Low predictivity for CE in this study is due to 
lower heritability combined with limited recording 
for this trait and a low incidence of difficult calving. 
Additionally, very few genotyped animals had a diffi-
cult calving, perhaps because animals from a difficult 
calving are unlikely to be retained for breeding and, 
therefore, would not be genotyped on a regular basis. 
Higher predictivity and impact of genomic selection 
for CE could be expected in breeds with higher inci-
dence of calving problems.

Because the increase in predictivity for CE was 
very small compared to predictivity of traditional 

evaluations, indirect predictions and the APY were not 
tested for this trait.

In this paper, only predictivity for the direct ge-
netic effect is shown; however, models for BiW and 
WW included maternal effect, which is also important 
in genetic evaluations. We unsuccessfully attempted 
to derive formulas for predictivity of maternal effects. 
Such predictivity can be hard to assess because the ma-
ternal effect occurs 1 generation back, which means 
that the corrected phenotype of animal i should be cor-
related with the maternal effect of the dam of animal i. 
But dams usually have more than 1 progeny and there 
is genetic correlation between direct and maternal for 
BiW, which makes derivations difficult. Lourenco et al. 
(2013) used simulated data that mimicked a beef cattle 
population and showed that the gain for the maternal 
effect with ssGBLUP is as high as for the direct effect.

Single-Step Genomic BLUP with Indirect 
Predictions for Young Animals

Predictive ability for indirect prediction via con-
version of DGV into SNP effects is shown in Fig. 1. 
When the reference population included top bulls and 
top cows (ref_2k), the predictivity of indirect DGVy 
was lower than predictivity for traditional EBV for the 
3 traits (0.23 vs. 0.29 for BiW, 0.28 vs. 0.34 for WW, 
and 0.19 vs. 0.23 for PWG). Predictivity for GEBVy 
calculated as an index of indirect DGVy with PA was 
higher than those for EBV for the 3 traits (0.31 vs. 
0.29 for BiW, 0.36 vs. 0.34 for WW, and 0.24 vs. 0.23 
for PWG); however, this predictivity was lower than 
the ones from full ssGBLUP (except for WW). With 
larger reference population (ref_8k), all indirect DGVy 
were similar to or more accurate than EBV and the in-
dex had predictivity similar to the full ssGBLUP. With 
the largest reference population (ref_33k), all indirect 
DGVy were almost as accurate as GEBV from full ss-
GBLUP, with the index marginally improving predic-
tivity for WW. This marginal improvement for WW 
may be caused by the use of less than optimal genetic 
parameters, for example, zero covariance between di-
rect and maternal effects (to reduce computing costs). 
The DGVy obtained with ref_33k reference population 
were more accurate than GEBV from full ssGBLUP 
obtained with ref_8k reference population.

Although predictivity of indirect predictions 
when using ref_33k was similar to predictivity from 
full ssGBLUP, it does not mean that predictions have 
the same average. The reason for that is the differ-
ent sources of information used to calculate indirect 
predictions. Correlations between GEBV and indirect 
predictions are a good tool to assure that the latter can 
be used for interim evaluations. Correlations between 

Table 2. Predictive ability of future phenotypes for 
young genotyped animals born in 2013

Trait1
Animals in 
validation BLUP

ssGBLUP2

ref_bulls ref_2k ref_33k
BiW 18,721 0.29 0.34 0.34 0.39
WW 18,721 0.34 0.35 0.35 0.38
PWG 18,721 0.23 0.27 0.27 0.29
CE 13,166 0.12 0.13 0.13 0.13

1BiW = birth weight; WW = weaning weight; PWG = postweaning 
gain; CE = calving ease.

2Single-step genomic BLUP (ssGBLUP) included genotypes for 
reference and validation populations, but phenotypes for validation 
animals were removed. Predictive ability was calculated as correlation 
between corrected phenotypes and genomic EBV. ref_bulls is a reference 
population with top bulls that had EBV accuracy for BiW ≥0.85; ref_2k 
contains top bulls and top cows that had an EBV accuracy for BiW ≥0.85; 
ref_33k contains all genotyped animals born up to 2012.
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GEBV from full ssGBLUP and DGVy or GEBVy from 
indirect predictions are shown in Table 3. On average, 
correlations with DGVy were 0.73, 0.89, and 0.96 for 
ref_2k, ref_8k, and ref_33k, respectively. Higher cor-
relations were observed between GEBV and GEBVy, 
with values for the 3 reference sets being 0.89, 0.95, 
and 0.97, respectively. Those results endorse the use 
of a reference population of size close to 33,000 ani-
mals for this American Angus data set. By doing that, 
indirect predictions are as accurate as predictions in-
cluding genotypes for young animals in the evaluation 
(full ssGBLUP).

For young animals, GEBV = w1PA + w4DGV – 
w5PP, with all weights adding up to 1.0 (VanRaden 
and Wiggans, 1991; VanRaden et al., 2009; Aguilar et 
al., 2010). When the number of genotyped animals is 
small, w4 is small and ignoring PA reduces predictiv-
ity. Using an index with PA improves the predictivity; 
however, PP is ignored and computed weights w1 and 
w4 are approximate. When the number of genotyped 
animals is large, w4 is close to 1.0 and ignoring PA 
marginally reduces the predictivity for some traits. 
Therefore, the indirect prediction via DGV is accurate 
when SNP effects are derived from ssGBLUP with 
sufficient size of the reference population.

Neglecting PP seems to have no considerable ef-
fect in this population, because predictivity of indirect 
predictions was very similar to predictivity from full 
ssGBLUP. Neglection of PP indirectly means adjust-
ing PA for an average PP. VanRaden et al. (2012) used 
different weights for animals based on the number of 
genotyped parents, which better accounts for PP.

A study by Wiggans et al. (2015) used SNP effects 
from previous monthly genomic multistep evaluations 
to calculate preliminary GEBV for young genotyped 
animals. The objective was to have daily or weekly ge-

nomic evaluations for U.S. dairy cattle and reduce the 
time between having DNA samples and predictions 
from a monthly official evaluation. Their reference 
set contained all genotyped animals with phenotypes 
(about 597,000; corresponding to ref_33k in our study) 
and correlations between preliminary and official eval-
uations were higher than 0.99 for Holsteins but smaller 
for other breeds with a smaller number of genotyped 
animals. Further research with different species will be 
critical in determining the sufficient size of the refer-
ence population for indirect predictions to achieve high 
predictivity. It may be related to effective population 
size, number of independent SNP (Pintus et al., 2013), 
and relationships between reference and validation 
populations as in multistep methods. Although indirect 
predictions via ssGBLUP use a concept similar to mul-
tistep methods for young genotyped animals, indirect 
predictions via ssGBLUP may be more accurate than 
multistep predictions because the latter are affected by 
approximations involved in deregressions and possible 
double counting of phenotypic information.

For young animals, indirect predictions via SNP 
effects from ssGBLUP seems a viable alternative as 
it can be done separately from the full evaluation. As 
SNP effects are calculated based on trait GEBV or 
DGV, indirect predictions are easily obtained for mul-
titrait models, as done in this study; multibreed and 
crossbred evaluations are possible when the G ma-
trix is able to account for information on all breeds. 
However, if young animals and particularly full-sibs 
are intensively selected, selection on the Mendelian 
sampling will not be accounted for, leading to pre-
selection bias (Patry and Ducrocq, 2011). Analyses 
by ssGBLUP with all genotypes subject to selection 
are expected to account for preselection (VanRaden 
and Wright, 2013), because selection is accounted for 

Figure 1. Predictive ability of indirect predictions on 18,721 young genotyped animals when using reference populations ref_2k (contains top bulls 
and top cows that had an EBV accuracy for BiW ≥0.85), ref_8k (contains all parents that were genotyped) ref_33k (contains all genotyped animals born up 
to 2012) animals to run single-step genomic BLUP (ssGBLUP) and derivate SNP effects. BiW = birth weight; WW = weaning weight; PWG = postweaning 
gain; DGVy = direct genomic value for young genotyped animals; GEBVy = is genomic estimated breeding value obtained via indirect predictions for young 
animals and DGVy. GEBV (genomic estimated breeding value, obtained directly from ssGBLUP when genotypes on reference and validation animals were 
considered together in evaluations are genomic predictions obtained directly from ssGBLUP when genotypes on reference and validation animals were 
considered together in evaluations. Predictive ability was calculated as correlation between corrected phenotypes and genomic EBV.
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when all information used for selection is included in 
the model (Henderson, 1975).

Comments on SNP Weighting and  
SNP Selection

The way SNP effects are calculated in ssGBLUP 
allows for inclusion of different weights for SNP: 

( )ˆ ¢= -1u DZ G dgV , with weights for G fit into the 
diagonal matrix D. Those weights can be calculated 
through an iterative process, or external weights can be 
used as input for ssGBLUP (Wang et al., 2012; Su et al., 
2014). Weighting G seems to be a reasonable approach 
to achieve higher prediction accuracy, especially in the 
presence of “major” SNP. Sun et al. (2011) showed 
higher prediction accuracy when using weighted G in 
regular GBLUP compared to BayesB. For some traits, 
SNP weighting or SNP selection in ssGBLUP also gave 
additional prediction accuracy (Wang et al., 2014). In 
fact, when weights are different per trait, this precludes 
the use of multiple traits unless the model includes 1 
common additive effect and specific additive effects for 
individual traits. In practice and especially under a se-
lection index, gains from a multiple-trait analysis can 
overcome losses due to not fitting “major” SNP. Also, 
when the number of genotyped animals increases, the 
rate of gain in reliability increases at a slower pace 
(VanRaden et al., 2011); therefore, weighting SNP may 
no longer have a big impact on prediction accuracy 
(Winkelman et al., 2015).

Single-Step Genomic BLUP with G Inverted  
by a Recursive Algorithm

Predictive ability of GEBV when the inverse of G 
was computed with the APY is shown in Fig. 2. When 
the recursions were conditioned on ref_2k, ref_4k, 
ref_8k, and ref_33k, the procedure accounted for 67, 
88, 97, and 100%, respectively, of predictivity gains of 
ssGBLUP over BLUP. Therefore, in ssGBLUP, using 
genomic recursion to invert G while conditioning on 
enough number of animals, in this case about 8,000, 
has the same prediction power as G using direct inver-
sion. The amount of memory necessary for the APY 
G–1 using ref_2k, ref_4k, ref_8k, and ref_33k was ap-
proximately 0.8, 1.6, 3.2, and 13.7 GB, respectively, 
whereas the amount of memory for the regular G–1 is 
21.6 GB. Therefore, using the APY G–1 makes com-
putations less costly and faster.

Tests involving 100,000 genotyped Holsteins with 
recursions conditioned on more than 15,000 animals 
resulted in practically identical GEBV compared to 
the regular inversion but with a better convergence 
rate (Fragomeni et al., 2015), indicating that the APY 
has good predictive and numerical properties. Those 
authors suggested that the necessary number of ani-
mals being conditioned is proportional to the number 

Table 3. Correlations between genomic estimated 
breeding value from full single-step genomic BLUP 
and direct genomic value for young genotyped ani-
mals (DGVy) or the genomic estimated breeding value 
obtained via indirect predictions for young animals 
(GEBVy) from indirect predictions.

Trait1
Indirect 

prediction ref_2k2 ref_8k2 ref_33k2

BiW DGVy 0.66 0.87 0.96
GEBVy 0.85 0.94 0.97

WW DGVy 0.75 0.89 0.95
GEBVy 0.90 0.95 0.97

PWG DGVy 0.78 0.90 0.96
GEBVy 0.91 0.96 0.97

1BiW = birth weight; WW = weaning weight; PWG = postweaning gain.
2ref_2k (contains top bulls and top cows that had an EBV accuracy for 

BiW ≥0.85), ref_8k (contains all parents that were genotyped) ref_33k 
(contains all genotyped animals born up to 2012).

Figure 2. Predictive ability of genomic estimated breeding value for 
18,721 young genotyped animals when using the algorithm for proven and 
young animals to invert the G matrix (genomic-based relationship matrix) 
with different definitions of proven animals: ref_2k (contains top bulls and 
top cows that had an EBV accuracy for BiW ≥0.85), ref_4k (contains geno-
typed parents of genotyped animals), ref_8k (contains all parents that were 
genotyped) ref_33k (contains all genotyped animals born up to 2012). 
Predictive ability was calculated as correlation between corrected pheno-
types and genomic EBV. Predictions in single-step genomic BLUP (ssGB-
LUP) are obtained through direct inversion of G. BiW = birth weight; WW 
= weaning weight; PWG = postweaning gain.
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of independent chromosome segments, which is a 
function of the effective population size.

The main advantages of the APY are low comput-
ing costs and numerical stability. With conditioning on 
8,000 animals, for example, the only inverse required 
is for a block of G for 8,000 animals and additional 
genotypes require only linear storage and computa-
tions. Subsequently, computations with a large num-
ber of genotyped animals may be feasible with simi-
lar predictivity as in the regular inversion. The APY 
would be the algorithm of choice for regular evalu-
ations with very large number of genotyped animals.

Conclusions

Genomic evaluation in beef cattle using ssGBLUP 
is feasible for either linear or categorical traits. Gains 
in predictive ability over BLUP are dependent on the 
size and composition of the reference population and 
are large for growth traits and small for CE. With a 
sufficient number of animals in the reference popu-
lation, indirect prediction for young animals via SNP 
effects provides predictivity similar to full ssGBLUP, 
allowing for quick genomic predictions without run-
ning a complete evaluation. Use of the algorithm for 
proven and young animals in ssGBLUP allows for in-
corporation of large number of genotyped animals at 
low cost without compromising the predictive ability.
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