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INtRODUCtION

The cattle tick is of substantial concern in tropi-
cal areas, because it can greatly diminish animal per-
formance. Furthermore, parasite resistance due to in-
discriminate use of treatments with acaricides, risk of 
chemical residues in milk and beef, and also repeated 
failures of effective vaccine development has driven 
researchers to seek for alternative solutions. A poten-
tially viable alternative to overcoming this problem 
is the selection of genetically superior animals for 
tick resistance based on genetic evaluation programs. 
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ABStRACt: Very few studies have been con-
ducted to infer genotype × environment interaction 
(G×E) based in genomic prediction models using 
SNP markers. Therefore, our main objective was to 
compare a conventional genomic-based single-step 
model (HBLUP) with its reaction norm model exten-
sion (genomic 1-step linear reaction norm model 
[HLRNM]) to provide EBV for tick resistance as well 
as to compare predictive performance of these mod-
els with counterpart models that ignore SNP marker 
information, that is, a linear animal model (ABLUP) 
and its reaction norm extension (1-step linear reaction 
norm model [ALRNM]). Phenotypes included 10,673 
tick counts on 4,363 Hereford and Braford animals, 
of which 3,591 were genotyped. Using the deviance 
information criterion for model choice, ABLUP and 
HBLUP seemed to be poorer fitting in comparison 
with their respective genomic model extensions. 
The HLRNM estimated lower average and reaction 
norm genetic variability compared with the ALRNM, 
whereas ABLUP and HBLUP seemed to be poorer 

fitting in comparison with their respective genomic 
reaction norm model extensions. Heritability and 
repeatability estimates varied along the environmen-
tal gradient (EG) and the genetic correlations were 
remarkably low between high and low EG, indicating 
the presence of G×E for tick resistance in these popu-
lations. Based on 5-fold K-means partitioning, mean 
cross-validation estimates with their respective SE 
of predictive accuracy were 0.66 (SE 0.02), 0.67 (SE 
0.02), 0.67 (SE 0.02), and 0.66 (SE 0.02) for ABLUP, 
HBLUP, HLRNM, and ALRNM, respectively. For 
5-fold random partitioning, HLRNM (0.71 ± 0.01) 
was statistically different from ABLUP (0.67 ± 0.01). 
However, no statistical significance was reported 
when considering HBLUP (0.70 ± 0.01) and ALRNM 
(0.70 ± 0.01). Our results suggest that SNP marker 
information does not lead to higher prediction accu-
racies in reaction norm models. Furthermore, these 
accuracies decreased as the tick infestation level 
increased and as the relationship between animals in 
training and validation data sets decreased.
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Studies have demonstrated that tick resistance may be 
heritable with heritability estimates ranging from 0.05 
to 0.42 (Rechav et al., 1990; Burrow, 2001; Budeli et 
al., 2009; Oliveira et al., 2012; Ayres et al., 2013).

Reaction norms refer to phenotypic profiles as in-
fluenced by genotypes and by variation across environ-
ments. The use of linear reaction norm models (LRNM) 
specifically models genetic merit as a linear function of 
an environmental gradient (EG; Falconer and Mackay, 
1996). Typically, these EG are based on the mean per-
formance of the response variable for the various en-
vironments and are typically based on contemporary 
group (CG) assignments (Cardoso and Tempelman, 
2012). Several studies have reported the importance of 
genotype × environment interaction (G×E) in different 
traits in beef cattle that potentially translate into genetic 
rerankings of animals across different environments 
(Pégolo et al., 2009; Corrêa et al., 2010; Ambrosini et al., 
2012). Mota et al. (2016) has suggested that G×E exists 
for tick resistance and may be captured using LRNM.

The use of genomic-wide selection (Meuwissen et al., 
2001) is widely believed to enhance the accuracy of EBV 
such that it is conceivable to further infer G×E based on 
SNP marker information. Silva et al. (2014), studying to-
tal number born in pigs as their response, used LRNM 
in conjunction with SNP marker information, suggesting 
that as a promising approach to infer G×E.

However, this Silva et al. (2014) and other LRNM 
studies are typically conducted using a commonly 
used 2-step reaction norm approach (Calus et al., 2002; 
Kolmodin et al., 2002) whereby the EG covariate is 
first estimated as the CG mean or effect in pedigree-
based linear animal model (ABLUP), that is, without 
a reaction norm specification. These CG estimates are 
then considered as known BLUP EG covariates in the 
subsequent LRMN analysis. Su et al. (2006) demon-
strated that failing to take in account the uncertainty 
of these covariates could lead to biased inferences, 
including incorrect genetic rankings of animals. They 
subsequently proposed a 1-step Bayesian LRNM ap-
proach, which treats the EG covariate as having uncer-
tainty. Mota et al. (2016) reported that models fitted 
using the 1-step approach demonstrated better fit than 
the 2-step approach for tick resistance in Hereford and 
Braford beef cattle populations. Cardoso (2013) de-
veloped software (Intergen) to fit 1-step LRNM that 
further allow for the specification of heterogeneous 
residual variances and genetic marker information. 
Cardoso and Tempelman (2012) reported that 1-step 
LRNM allowing for heterogeneous residual variances 
across environments were better fitting in comparison 
with specifications based on either 2-step or homo-
geneous residual variances across environments for 
postweaning BW gain in Angus cattle.

The objectives of this study were 1) to compare 
conventional nongenomic- and genomic-based mod-
els with their reaction norm extensions on tick infesta-
tion data considering the CG effects as EG and 2) to 
compare breeding values obtained from using nonge-
nomic and genomic approaches.

MAtERIALS AND MEtHODS

This work was developed using preexiting data 
sets. All experimental procedures that involved ani-
mals to generate the original data were approved by 
the Committee for Ethics in Animal Experimentation 
from the Federal University of Pelotas (Pelotas, RS, 
Brazil; Process Committee for Ethics in Animal 
Experimentation number 6849).

Phenotypic and Genotypic Data

Phenotypic data used in this current study included 
records of tick counts (tC) on Hereford and Braford 
beef cattle from herds raised in Rio Grande do Sul state, 
Brazil. Up to 3 TC were obtained on each animal from 
326 to 729 d of age, ensuring that a minimum interval 
of 30 d has elapsed between counts. Tick counts were 
performed by recording the number of female ticks ≥4.5 
mm of length present on one side of the animal (Wharton 
and Utech, 1970; Cardoso et al., 2015). The distribution 
of the number of measurements taken per animal was 
241, 1,934, and 2,188 animals having 1, 2, and 3 TC 
measurements, respectively, for a total of 10,673 re-
cords. The average age during the evaluation period was 
524 ± 65 d and the overall mean TC was 34.99 with a 
SD of 42.15 (range 0–532). Because TC were not nor-
mally distributed, the log transformation of tick counts 
(LttC) was used such that LTTC = log10 (TC + 1.001) 
was the response variable. The constant 1.001 was in-
cluded in this transformation as some of the TC were 
equal to 0 (Biegelmeyer, 2012; Ayres et al., 2013).

The CG were defined as groups of animals being 
within the same herd, year of birth, and season of birth 
(April to July, August to November, and December to 
March); of the same sex; and from the same management 
group. Each CG was required to have at least 5 animals 
and with each LTTC record being within 3.5 SD from 
their respective CG means. Moreover, connectedness 
among CG was assessed by the AMC software (Roso and 
Schenkel, 2006), such that CG with fewer than 10 genetic 
links were removed. Finally, CG effects/means for LTTC 
were assumed to define the environmental covariates (i.e., 
EG) for a LRNM, as these effects are typically the most 
appropriate entities to describe environmental conditions 
most important for beef cattle production (Cardoso et al., 
2011; Mattar et al., 2011; Cardoso and Tempelman, 2012).
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Genotypes based on 54,609 SNP markers from 
the BovineSNP50 Illumina BeadChip Technology 
(Illumina, San Diego, CA)  were acquired on 3,591 
of these Hereford and Braford beef cattle. Genotype 
quality control was implemented using the R/snpStats 
package (Clayton, 2012) to remove samples with call 
rates < 0.90, heterozygosity deviations > 3.0, mismatch-
ing sex, and duplicated records. Only SNP mapped to 
autosomes, with call rates greater than 0.98, minor al-
lele frequencies > 0.03, or not highly significant de-
viations from Hardy–Weinberg equilibrium (P > 10−7), 
were used for further analyses. We considered the high-
est minor allele frequencies for SNP in the same posi-
tion or highly correlated (r > 0.98). Missing genotypes 
were imputed for animals using FImpute (Sargolzaei 
et al., 2011), and after various quality control edits, 
41,045 SNP markers (78%), including 136 sires; 2,803 
Braford; and 652 Hereford yearling bulls, steers, and 
heifers with TC records, remained to estimate genomic 
relationship coefficients between animals.

The 4,363 animals having records were born be-
tween 2008 and 2011 and originated from 197 sires and 
3,966 dams with up to 10 generations of pedigree depth. 
Pedigree information recovered from historical breed-
ing records comprised 11,967 animals and was highly 
incomplete because of multiple-sire mating. This re-
sulted in 65% of the animals with TC having unknown 
paternity. For pairs of genotyped parent–progeny, mis-
matches on pedigree errors were checked by the per-
centage of Mendelian conflicts as proposed by Wiggans 
et al. (2009) by using seekparentf90 software (http://nce.
ads.uga.edu/wiki/doku.php?id=readme.seekparentf90), 
accessed September 19, 2013), with maximum toler-
ance of 1% (threshold) to allow genotyping errors. If 
a parent–progeny pair conflict was observed or if one 
or neither parent had been genotyped, genotypes were 
compared with those of every other animal genotype to 
determine if there was a parent–progeny relationship. 
Unique putative parents of the appropriate sex with less 
than 1% Mendelian conflicts and suitable birthdates 
were designated as true parents.

We adopted the approach described by Fernandez and 
Toro (2006) that uses the simulated annealing algorithm 
in the MOL_COANC software ((Instituto Nacional de 
Investigacion Agropecuaria - INIA, Madrid, Spain)) to 
reconstruct half-sibs families within multiple-sire groups 
based on observed genomic relationships and then set 
new half-sibling relationships, when a true sire was not 
identified with the above describe procedure. Pedigrees 
were reconstructed by creating a “virtual” ancestor for 
each identified half-sib family.

A total of 576 changes in relationship were made af-
fecting 1,311 (12.28%) TC records; 96.52% (556) and 
3.47% (20) were related to the sire and dam information, 

respectively. It was observed 23.67% (196) and 13.33% 
(12) of conflicts, respectively, to genotyped sire–progeny 
and dam–progeny pairs. Virtual parents were assigned 
to 2,174 individuals, generating 704 half-sib families, 
and 12,754 animals remained after pedigree reconstruc-
tion and pruning, with a detailed breakdown provided in 
Table 1.

Statistical Models

A Conventional Genomic-Based Single-Step 
Model. Consider the following conventional genomic-
based single-step model (HBLUP):

yijk = x′jβ + wi + aj + cj + eijk.  [1]

Here, yijk is the kth phenotypic record of ani-
mal j recorded within CG i; β is the vector of fixed 
effects that includes an overall intercept and linear 
regression coefficients for Nellore breed proportion, 
heterozygosity, and recombination loss as well as 
linear and quadratic regression coefficients on age of 
calf; x′j is the known incidence row vector of covari-
ates connecting β to yijk; wi is the random effect of CG i 
(i = 1, …, 146 levels); aj is the random additive genetic 
effect of animal j; cj is the random permanent environ-
ment effect of animal j; and eijk is the random residual.

The following distributional assumptions were as-
sumed: w = {wi} ~ N(0, Iσ2

w), a = {aj} ~ N(0, Hσ2
a), c = 

{ci} ~ N(0, Iσ2
c), and e = {eijk} ~ N(0, Iσ2

e), in which σ2
w, 

σ2
a, σ2

c, and σ2
e represent variances due to CG, additive 

genetics, permanent environment, and residual terms, re-
spectively. Here, I is the identity matrix and H represents 
a matrix that includes genomic information (Legarra et 
al., 2009; Misztal et al., 2009; Aguilar et al., 2010, 2011).

The inverse of H (H−1) was obtained using 
preGSf90 software (http://nce.ads.uga.edu/wiki/doku.
php?id=readme.pregsf90), accessed January 6, 2014, 
and incorporated as a user-defined covariance struc-
ture H−1 in the Intergen software (Cardoso, 2013) to 
combine genomic information with 1-step reaction 
norm models as described hereafter.

A Genomic One-Step Linear Reaction Norm 
Model. The model proposed by Su et al. (2006) is 

table 1. Pedigree structure as defined by parentage 
certainty
Parentage With tick counts Without tick counts Total
Both parents known 3,673 1,937 5,610
Both parents unknown 0 4,550 4,550
Only sire known 11 19 30
Only dam known 679 1,885 2,564
Total 4,363 8,391 12,754
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purely Bayesian, because covariates associated with 
the reaction norm are treated as unknown, thereby al-
lowing inference for all unknowns together within a 
HBLUP with its reaction norm model extension (ge-
nomic 1-step linear reaction norm model [HLRNM]):

yijk = x′jβ + wi + aj + bjwi + cj + djwi + eijk.  [2]

This model can be rewritten in matrix notation as be-
low (Su et al., 2006):

y = Xβ + Pw + Zaa + Zbb + Zcc + Zdd + e,  [3]

in which y = {yijk} is the n × 1 vector of observations, 
β is the fixed effects vector of order p, w = 1{ } wn

i iw =  is 
the vector of environmental effects, a = 1{ }q

j ja =  is the 
vector of random genetic intercepts, b = 1{ }q

j jb =  is the 
vector of random genetic slopes, c = 1{ }q

j jc =  is the 
vector of random permanent environment intercepts, 
d = 1{ }q

j jd =  is the vector of random permanent envi-
ronment slopes, and e is the n × 1 vector of residuals. 
Furthermore, X, P, Za, and Zc are known incidence 
matrices, whereas the row address of matrices Zb and 
Zd has exactly 1 element equal to the effect of the 
environmental covariate (wi or an estimate of wi) for 
that CG in the row address of the observation, with all 
other elements in that row equal to 0 (Su et al., 2006), 
and e is the vector of random residuals.

To infer environmental sensitivities by using a hierar-
chical Bayesian model, 3 stages are required. According 
to Su et al. (2006), the first stage defines the distribution 
of the phenotypic data conditional on all other param-
eters. The second stage is represented by the prior distri-
butions of the location parameters (β, w, a, b, c, and d).

Finally, the third stage was based on specifying prior 
distributions for the variance or covariance components. 
These stages were described in detail in Mota et al. (2016).

To compare the results obtained from pedigree-
based and genomic relationship matrices and to investi-
gate the efficiency of genomic EBV (GEBV) prediction 
across environments through cross-validation, we have 
used EBV from the ABLUP and its reaction norm ex-
tension (1-step linear reaction norm model [ALRNM]). 
These models were also described in Mota et al. (2016).

Bayesian Inference and Model Comparison. The 
conditional posterior distributions used in Monte Carlo 
Markov chain algorithms were described in detailed 
by Cardoso and Tempelman (2012). The Intergen soft-
ware (Cardoso, 2013) was used considering a total of 
1,000,000 cycles, after 100,000 cycles of burn-in, sav-
ing every 10th cycle. Global convergence was checked 
using the Geweke’s Z criterion (Geweke, 1991).

To access the goodness of the fit, a deviance informa-
tion criterion (DIC) was used (Spiegelhalter et al., 2002):

( ) ( )DIC 2 ( )DD p D Dq q q= + = − , [4]

in which ( ) ( )| [ ]yD E Dqq q=  is the posterior expectation 
of Bayesian deviance; ( ) ( )Dp D Dq q= −  corresponds 
the penalty for increasing model complexity, in which 
θ is the model parameters vector; and ( )D q  is the 
Bayesian deviance as a function of the posterior mean 
of the parameters. Smaller values of DIC indicate a 
better-fitting model.

Genetic Parameters Estimation and Genomic 
EBV over Environments. The additive genetic vari-
ance for a specific environment i with effect wi was 
obtained as follows:

( )2 2 2 2| var 2A i j j i a i b i abw a b w w ws s s s= + = + + .  [5]

Thus, the heritability, repeatability, and genetic covari-
ance between 2 EG based on covariate values wi and 
wi′ was calculated following Mota et al. (2016).

The GEBV of sire j specific to a given environment 
i was obtained by GEBVj|wi + aj + bjwi when using 
HBLUP and HLRNM. In addition, EBV from ABLUP 
and LRNM was obtained following Mota et al. (2016).

The sire GEBV or EBV were compared by the 
ranking of the animals obtained by all tested mod-
els for low, medium, and high tick infestation levels. 
Potential differences in reranking of sires for selection 
were determined via Spearman correlations as previ-
ously described by Mota et al. (2016).

Cross-Validation Study

Cross-validation prediction accuracy was evalu-
ated by 2 different 5-fold cross-validation strategies: 
One strategy was based on the K-means procedure of 
Saatchi et al. (2011) that minimizes genetic ties be-
tween training and validation subsets. The other strat-
egy was based on random partitioning of training and 
validation data sets for comparative purposes.

Cross-validation accuracy (ry,ŷ) was defined as 
the correlation between observed (y) and predict-
ed phenotypes (ŷ) in the validation data sets, based 
on estimates derived from training data sets. The 
accuracy of the EBV was compared between all the 
tested models. Therefore, all models were fitted under 
the same cross-validation scheme, that is, considering 
the random intercept for ABLUP and HBLUP and 
random intercept and slope for ALRNM and HLRNM.

Finally, comparisons between models for cross-
validation accuracy were based on a randomized 
complete block design analysis that has each treatment 
(models fitted) applied in each block (folds) of 
correlations as response variables. Letting yij denote 
the cross-validation prediction correlation for model 
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i = 1, 2, 3, 4 on cross-validation fold j = 1, 2, 3, 4, 5, 
the equation for the model is yij = μ + τi + bj + eij, in 
which μ is the overall mean, τi is the effect of model i, 
bj is the random effect associated with fold j, and eij is 
the random error associated with the experimental unit 
in fold j that was analyzed using model i.

RESULtS AND DISCUSSION

Model Comparison via a  
Deviance Information Criterion

Deviance information criterion values were 
3,647.73, 3,115.54, 2,443.07, and 2,055.09 for 
ABLUP, HBLUP, ALRNM, and HLRNM, respectively. 
Spiegelhalter et al. (2002) reported that models with 
differences in DIC values lower than 2 need to be con-
sidered as equally good, whereas models with values 
higher than 2 have been considered as having poorer fit.

Therefore, the models not modeling G×E (i.e., 
ABLUP and HBLUP) appeared to be poorer fitting 
in comparison with their respective G×E extensions 
(ALRNM and HLRNM), given the smaller DIC val-
ues of the latter. Hence, it would reinforce the impor-
tance of modeling G×E for tick resistance in Hereford 
and Braford beef cattle. In addition, models using the 
genomic relationship matrices (HBLUP and HLRNM) 
yielded smaller DIC values compared with their re-
spective animal model analogs that incorporated the 
pedigree based additive relationship matrix (ABLUP 
and ALRNM), confirming the importance of incorpo-
rating marker information in genetic evaluations.

Variance Components and Genetic Parameters  
under Genotype × Environment Interactions

The HLRNM lead to lower intercept and slope ge-
netic variance components posterior means but higher 
permanent variance component posterior means in 
comparison with ALRNM (Table 2). Furthermore, 
variance component estimates under HLRNM had 
lower posterior SD for both effects. Lower genetic 
variance component estimates based on the H ma-
trix rather than the A matrix were also reported by 
Veerkamp et al. (2011). According to these authors, 
this difference may happen due to the scaling meth-
ods used to combine the pedigree-based matrix A and 
the genomic relationship matrix (G), which in our 
case was based on equaling the averages of diagonal 
and off-diagonal elements of G and A22 (Vitezica et 
al., 2011; Christensen et al., 2012). In contrast to this 
study, Silva et al. (2014) reported similar variance 
components for the intercept and slope using the A 

and G matrices fitting a 2-step random regression re-
action norm model in pigs.

In general, the residual class variances were 
slightly higher for HLRNM compared with ALRNM, 
with no clear pattern being noticeable for both mod-
els (Table 2). Cardoso and Tempelman (2012), work-
ing with G×E models in postweaning gains in Angus 
cattle, also observed that the residual variance did not 
monotonically increase over the EG.

Under the nongenomic approach (A matrix), esti-
mated correlations between intercept and slope for both 
sets of random effects (i.e., additive genetic and perma-
nent environment effects) were positive but character-
ized by a great deal of uncertainty, as indicated by the 
posterior SD for the permanent environment correlation 
(Table 2). However, the HLRNM analyses lead to es-

table 2. Posterior means (SD) for the variance com-
ponents and genetic and permanent environment cor-
relations of the 2-step reaction norm model using ped-
igree (A) and pedigree plus marker information (H) 
relationship matrices

 
Parameter1

Model2

ALRNM HLRNM ABLUP HBLUP
σ2

a 0.024 (0.002) 0.016 (0.002) 0.021 (0.004) 0.015 (0.002)
σ2

b 0.037 (0.023) 0.030 (0.011) N/A3 N/A
σab 0.013 (0.006) 0.011 (0.004) N/A N/A
σ2

c 0.007 (0.002) 0.012 (0.002) 0.010 (0.003) 0.015 (0.02)
σ2

d 0.074 (0.027) 0.091 (0.018) N/A N/A
σcd 0.003 (0.006) 0.009 (0.005) N/A N/A
σ2

w 0.097 (0.012) 0.093 (0.011) 0.098 (0.012) 0.097 (0.012)
σ2

e1 0.122 (0.008) 0.129 (0.008) 1.912 (0.248) 1.806 (0.349)
σ2

e2 0.056 (0.005) 0.057 (0.005) 0.938 (0.124) 0.894 (0.176)
σ2

e3 0.062 (0.004) 0.065 (0.004) 0.859 (0.115) 0.809 (0.159)
σ2

e4 0.047 (0.003) 0.049 (0.003) 0.874 (0.120) 0.621 (0.125)
σ2

e5 0.099 (0.005) 0.102 (0.005) 1.046 (0.138) 1.318 (0.259)
σ2

e6 0.023 (0.002) 0.022 (0.002) 0.650 (0.089) 0.395 (0.080)
σ2

e7 0.053 (0.003) 0.052 (0.003) 0.652 (0.087) 0.765 (0.151)
σ2

e8 0.062 (0.004) 0.062 (0.004) 1.006 (0.134) 0.952 (0.187)
σ2

e9 0.057 (0.003) 0.056 (0.003) 0.817 (0.109) 0.765 (0.151)
σ2

e10 0.058 (0.003) 0.056 (0.004) 1.062 (0.143) 0.978 (0.150)
rab 0.476 (0.227) 0.518 (0.184) N/A N/A
rcd 0.157 (0.259) 0.265 (0.153) N/A N/A

1σ2
a = reaction norm intercept genetic variance; σ2

b = reaction norm 
slope genetic variance; σab = genetic covariance between intercept and 
slope; σ2

c = reaction norm intercept permanent environment variance; σ2
d = 

reaction norm slope permanent environment variance; σcd = permanent envi-
ronment covariance between intercept and slope; σ2

w = environmental vari-
ance; σ2

e1 = residual class 1; σ2
e2 = residual class 2; σ2

e3 = residual class 3; 
σ2

e4 = residual class 4; σ2
e5 = residual class 5; σ2

e6 = residual class 6; σ2
e7 = 

residual class 7; σ2
e8 = residual class 8; σ2

e9 = residual class 9; σ2
e10 = re-

sidual class 10; rab = genetic correlation between intercept and slope; rcd = 
permanent environment correlation between intercept and slope.

2ALRNM = 1-step linear reaction norm model; HLRNM = genomic 
1-step linear reaction norm model; ABLUP = linear animal model; 
HBLUP = conventional genomic-based single-step model.

3N/A = not applicable.
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timated positive correlations with high and moderate 
magnitude for additive genetic and permanent environ-
ment effects, respectively. These results are in agreement 
with previous studies under pedigree-based (Shariati et 
al., 2007; Mattar et al., 2011; Cardoso and Tempelman, 
2012) and genomic approaches (Silva et al., 2014).

The environmental variance components were 
slightly higher in ALRNM compared with HLRNM 
(Table 2). The heritability estimates (h2) over the 10th 
and 90th percentiles are shown in Fig. 1a. Similar heri-
tability estimates have been reported in literature using 
logarithmic transformation of the observed data (Budeli 
et al., 2009; Oliveira et al., 2012; Ayres et al., 2013).

Heritability estimates were higher for reaction 
norm models compared with conventional animal 
models regardless of genomic information (Fig. 1a). 
This reinforces the use of reaction norm models as 
a powerful alternative in genetic evaluation of this 
population. Additionally, h2 estimates were higher 
for ALRNM in all tick infestation levels (Fig. 1a), al-
though h2 estimates from HLRNM had smaller pos-
terior SD. The larger uncertainty about estimated pa-
rameters in the nongenomic approach (ALRNM) may 

be due to incomplete pedigree information from mul-
tiple-sire matings. Veerkamp et al. (2011) also found 
smaller SE of h2 using a SNP plus pedigree-based as 
opposed to pedigree-based relationships, even though 
h2 estimates were smaller in the latter. These authors 
have reported that may happen due to tight manage-
ment and/or relatively homogeneous groups of ani-
mals, which may be also a reason for the present study. 
Our results diverged from those reported by Forni et 
al. (2011) and Silva et al. (2014) in which h2 were sim-
ilar for A and G matrices approaches in pigs using an 
animal model and a reaction norm model, respectively.

The repeatability estimates varied along the EG 
(range 0.18–0.60) and were, in general, similar under 
approaches but higher for reaction norm extensions 
(Fig. 1b). These results demonstrate the importance 
of considering permanent environment effects; the 
higher estimated repeatabilities in harsh environments 
indicate that more resistant animals are more likely to 
maintain a consistent performance in their resistance 
in harsher environments than in favorable environ-
ments (i.e., low tick infestation).

Genetic correlations along the EG were remark-
ably low between the extreme EG, whereas EG with 

Figure 1. Posterior means heritabilities (a) and repeatabilities (b) for 
environments between the 10th and 90th percentiles of the environmental 
gradient obtained for Hereford and Braford tick counts by a 1-step linear 
reaction norm model based on pedigree (1-step linear reaction norm model 
[ALRNM]), a genomic 1-step linear reaction norm model (HLRNM), a tra-
ditional animal model based on pedigree (linear animal model [ABLUP]), 
and a conventional genomic-based single-step model (HBLUP).

Figure 2. Genetic correlations for Hereford and Braford tick resis-
tance performance on different environmental conditions obtained by the 
1-step linear reaction norm models considering pedigree (a) and pedigree 
+ genomics (b). 
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very similar values had high genetic correlations re-
gardless whether ALRNM (Fig. 2a) or HLRNM was 
implemented (Fig. 2b). In addition, negative correla-
tions could be observed between extreme EG under 
a genomic approach, which may indicate substantial 
G×E for tick resistance. However, low genetic cor-
relations within models could be artifacts created by 
few records or skewed distributions in extreme envi-
ronments using reaction norm models. Cardoso and 
Tempelman (2012) also reported low genetic correla-
tions between extreme EG under a nongenomic ap-
proach for postweaning gains in Angus cattle.

Rank correlations among posterior means of the 
genetic merit predictions (aj) under both approaches, 
obtained by the animal models (ABLUP and HBLUP) 
with those (gj|wi) obtained by their extensions 
(ALRNM and HLRNM), are shown in Table 3. Those 
values were above 0.60 with lower values across A 
and H relationship matrices. It indicates that rankings 
of animals for selection would be quite different be-
tween all tested models.

However, differences in environmental sensitivity 
did not resulted in many rerankings of the top 10% most-
used sires (>12 progeny) at different CG levels for both 
approaches. Under a genomic approach, the sires pre-
sented more outstanding breeding value variation across 
the EG (Fig. 3). Nevertheless, Fig. 3 also demonstrates 
that genetic merit also depends on EG under a genomic 
approach. Genomic EBV differences between animals 
decrease with a low EG, not revealing a complex G×E. 
It further indicates the difficulty in identifying superior 
breeding stock in low tick infestation environments.

Furthermore, once correlations across A and H ma-
trices were lower than within approaches, the impact 

on rankings of introducing marker information is rel-
evant because correlations within a genomic approach 
were higher than those within a nongenomic approach 
(Table 4). Finally, losses on selection precision by us-
ing a traditional animal model would not be expected 

Figure 3. Genetic tick resistance reaction norms of 10% most used 
(large number of progeny; >12) Hereford and Braford sires obtained by the 
1-step linear reaction norm models considering pedigree (a) and pedigree 
+ genomics (b). Animals with positive slopes are represented by the color 
blue. Animals with negative slopes are represented by the color red. A ma-
trix = the numerator relationship matrix based on pedigree; H matrix = a 
matrix that includes genomic information.

table 3. Spearman rank correlations1 among posterior means genetic values for tick counts of Hereford and 
Braford beef cattle at different environmental (tick infestations) levels obtained by the linear conventional animal 
and reaction norm models

Model2

ABLUP ALRNM ALRNM ALRNM HLRNM HLRNM HLRNM HBLUP
Environmental level3,4

Ov. LTI MTI HTI LTI MTI HTI Ov.
ABLUP (Ov.) 0.96 0.97 0.96 0.69 0.64 0.62 0.68
ALRNM (LTI) 0.90 0.97 0.94 0.72 0.65 0.62 0.67
ALRNM (MTI) 0.93 0.94 0.99 0.71 0.68 0.66 0.68
ALRNM (HTI) 0.91 0.88 0.99 0.70 0.68 0.67 0.68
HLRNM (LTI) 0.66 0.72 0.72 0.70 0.96 0.93 0.95
HLRNM (MTI) 0.61 0.62 0.68 0.69 0.96 0.99 0.97
HLRNM (HTI) 0.59 0.58 0.66 0.69 0.93 1.00 0.95
HBLUP (Ov.) 0.68 0.61 0.66 0.67 0.93 0.96 0.95

1Correlations between all animals above the diagonal and between the most used sires (larger number of progeny) below the diagonal.
2ABLUP = linear animal model; ALRNM = 1-step linear reaction norm model; HLRNM = genomic 1-step linear reaction norm model; HBLUP = 

conventional genomic-based single-step model.
3LTI = low tick infestation; MTI = medium tick infestation; HTI = high tick infestation; Ov. = overall.
4LTI represents the 10th (−0.396), MTI represents the 50th (0.020), and HTI represents the 90th (0.320) percentiles of the environmental gradient.
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to be substantial in both approaches due to similarity 
correlation of magnitude in low, medium, and also 
high EG. Cardoso and Tempelman (2012) reported 
different results under nongenomic models where 
one would expect losses by using conventional mod-
els such as ABLUP in this study across EG. Although 
we observed slight correlation values when we filtered 
sires with large numbers of progeny (top 10%; Table 
3), the same pattern was observed, as mentioned before, 
for the total number of animals in the data set.

Prediction Ability via Cross-Validation

Cross-validation prediction accuracies (ry,ŷ) 
within each of the tested models (ABLUP, HBLUP, 
HLRNM, and ALRNM) were effective, being higher 
than 0.55 in K-means and 0.59 in random partitioning 
strategies (Fig. 4).

Cross-validation estimates were, on average, 
0.66 ± 0.02, 0.67 ± 0.02, 0.67 ± 0.02, and 0.66 ± 0.02 
for ABLUP, HBLUP, HLRNM, and ALRNM, respec-
tively, based on K-means partitioning. For 5-fold ran-
dom partitioning, HLRNM (0.71 ± 0.01) was statisti-

cally different from ABLUP (0.67 ± 0.01). However, 
no statistical significance was reported when consider-
ing HBLUP (0.70 ± 0.01) and ALRNM (0.70 ± 0.01; 
Fig. 4; Table 4). In this context, although HLRNM 
presented the smallest DIC, prediction accuracies 
from this model were similar to other tested models. 
In part, this can be explained by the number of geno-
typed animals, which may not have been enough to in-
crease prediction accuracy. In contrast with this study, 
Silva et al. (2014) found higher genomic prediction 
accuracies and genetic correlations for reaction norm 
models compared with a standard sire model in pigs.

Finally, smaller values for ry,ŷ presented by 
K-means compared with random partitioning were ex-
pected and thereby reinforce that prediction accuracy 
deteriorate as the relationship between animals de-
creases (Saatchi et al., 2011). These authors reported 
lower accuracies for K-means partitioning compared 
with random partitioning for all 16 traits analyzed in 
American Angus beef cattle.

In general, one of the main contributions of the 
present study was to draw interest toward genome-
wide selection models that consider G×E. Despite 
the fact that the EG considered in the present study is 
related to CG effects in one region of Brazil, the pro-
posed 1-step reaction norms methodology can easily 
accommodate other traits and environments such as 
across country or multiple across country evaluations.

Conclusions

Although the complex genotype × environment 
interaction was not reported, reaction norm models 
might be used in genetic evaluation for tick resistance 
in Hereford and Braford beef cattle.

The results also suggest that marker information 
do not lead to higher accuracies of prediction, which 
decreased as the tick infestation level increased and as 

table 4. The P-values (P > |t|) in a t test for contrast 
of each difference of least squares means for the accu-
racy ry,ŷ between models for K-means and random 
partitioning using randomized complete block design 
(RCBD) analysis
Model/strategy1 K-means Random
ABLUP vs. HBLUP 0.2762 0.0139
ABLUP vs. HLRNM 0.5725 0.0010
ABLUP vs. ALRNM 0.8273 0.0056
HBLUP vs. HLRNM 0.5853 0.2241
HBLUP vs. ALRNM 0.3767 0.6701
HLRNM vs. ALRNM 0.7271 0.4183

1ABLUP = linear animal model; ALRNM = 1-step linear reaction 
norm model; HBLUP = conventional genomic-based single-step model; 
HLRNM = genomic 1-step linear reaction norm model.

Figure 4. Accuracy of genomic selection obtained by K-means and random partitioning based on a 5-fold cross-validation study using genotype × 
environment interaction (1-step linear reaction norm model [ALRNM] and a genomic 1-step linear reaction norm model [HLRNM]) and conventional 
animal models (linear animal model [ABLUP] and a conventional genomic-based single-step model [HBLUP]). ry,ŷ = cross-validation accuracy. 
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the relationship between animals in training and vali-
dation data sets decreased.
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