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Controlling spatial variation in agricultural field trials is the most important step to
compare treatments efficiently and accurately. Spatial variability can be controlled at
the experimental design level with the assignment of treatments to experimental units
and at the modeling level with the use of spatial corrections and other modeling strate-
gies. The goal of this study was to compare the efficiency of methods used to control
spatial variation in a wide range of scenarios using a simulation approach based on real
wheat data. Specifically, classic and spatial experimental designs with andwithout a two-
dimensional autoregressive spatial correction were evaluated in scenarios that include
differing experimental unit sizes, experiment sizes, relationships amonggenotypes, geno-
type by environment interaction levels, and trait heritabilities. Fully replicated designs
outperformed partially and unreplicated designs in terms of accuracy; the alpha-lattice
incomplete block design was best in all scenarios of the medium-sized experiments.
However, in terms of response to selection, partially replicated experiments that evaluate
large population sizes were superior in most scenarios. The AR1×AR1 spatial correc-
tion had little benefit inmost scenarios except for themedium-sized experiments with the
largest experimental unit size and low GE. Overall, the results from this study provide a
guide to researchers designing and analyzing large field experiments.
Supplementary materials accompanying this paper appear online.
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Abbreviations

ALPHA Alpha-lattice incomplete block design

A-PREP Augmented partially replicated experimental design

AR1×AR1 Two-dimensional autoregressive process

AYT Advanced yield trial

COR Pearson correlation coefficient between predicted and true genotypic values

CRD Completely randomized design

EYT Elite yield trial

GE Genotype by environment interaction

IBD Incomplete block design

LV Linear variance

MET Multi-environment trial

NSC No spatial correction

PREP Partially replicated experimental design

PYT Preliminary yield trial

RBE Randomization-based experimental design

RCBD Randomized complete block design

R-CD Row–column alpha-lattice design

SP Spatial experimental design

UNREP Unreplicated experimental design

1. INTRODUCTION

The importance of controlling spatial heterogeneity in agricultural field trials to efficiently
and accurately estimate treatment effects has been widely understood for decades (Brownie
et al. 1993; Casler 2015; Fisher 1935; Smith et al. 2005). Spatial heterogeneity in a field
due to fertility, moisture, slope, shade, or management practices can bias the estimation
of treatment effects (Grondona et al. 1996), making it difficult to accurately differentiate
between treatments (Zystro et al. 2019). Yet, it is often difficult to predict patterns of spatial
variation, even with years of experimentation in a field (Casler 2015). Fisher’s (1926; 1935)
experimental design principles provide somemeasure of protection against spatial variation,
but many agree that additional levels of spatial control are beneficial (Borges et al. 2019;
Cullis et al. 2006; John and Eccleston 1986; Papadakis 1937; Piepho et al. 2013; Piepho
and Williams 2010; Stefanova et al. 2009; Wilkinson et al. 1983; Zimmerman and Harville
1991).

Spatial control can be approached in both the design and the analysis phases of exper-
imentation. Randomization-based experimental (RBE) designs with some level of spatial
control include amongothers, randomized complete block (RCBD,Fisher 1926), incomplete
blocks (Yates 1936) including alpha-lattice (ALPHA, Cochran and Cox 1957; Patterson and
Williams 1976), row–column (R-CD, Fisher 1926), augmented (Federer 1956; Federer and
Raghavarao 1975), and partially replicated (PREP, Cullis et al. 2006; Moehring et al. 2014;
Williams et al. 2011) experimental designs. A class of experimental designs similar to these
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are spatial (SP) designs, which have additional restrictions on their randomization based
on a dependence correlation structure for the field that is either known or assumed a pri-
ori (Coombes 2002; Eccleston and Chan 1998; Martin and Eccleston 1991; Williams and
Piepho 2013). The SP designs generally follow a R-CD or an ALPHA design and are often
constructed using linear variance (LV, Piepho and Williams 2010; Williams 1986; Williams
et al. 2006; Williams and Piepho 2013) or autoregressive (AR1) models (Coombes 2002;
Eccleston and Chan 1998; Martin and Eccleston 1991).

The first andmost basic attempt at controlling spatial variability in field trials was through
the use of completely randomized designs (CRD) which rely strictly on randomization to
provide a valid estimate of the experimental error variance (Fisher 1926) and unbiased
estimates of treatment effects (Casler 2015) and comparisons (Piepho et al. 2003). Therefore,
a CRD assumes that all extraneous variables affect all experimental units equally. As an
improvement, theRCBD restricts the randomization of a complete set of treatments towithin
a block to control for extraneous variables like global spatial variation and management
practices that may affect blocks differently (Brownie et al. 1993). This further increases
the precision of treatment effects and reduces experimental error (Mead 1997). Because of
the effectiveness and simplicity of this blocking scheme, the RCBD is the most commonly
used experimental design in agricultural experimentation (Casler 2015; Van Es et al. 2007).
However, some researchers argue that other ways of controlling this variability are needed
because within block variation is common in large experiments (Grondona et al. 1996).
The class of incomplete block designs (IBDs) was created to allow for smaller block sizes
to mitigate this issue (Yates 1936). One specific IBD is the resolvable alpha-lattice design
(ALPHA, Patterson and Williams 1976; Williams et al. 2002) which is characterized by
having its treatments cycled through the incomplete blocks so that pairs of treatments within
an incomplete block occur a set number of times. Common schemes include having all pairs
occur the same number of times or having pairs occur either never or once (ALPHA(0,1)).
Many studies illustrate the effectiveness of the ALPHA design (Gonçalves et al. 2010;
Masood et al. 2008; Patterson and Hunter 1983; White et al. 1996; Williams and John
(1999)). Furthermore, Borges et al. (2019) showed that the ALPHA design was superior to
CRDs, RCBDs, and partially replicated designs at controlling spatial heterogeneity within
a single testing site for three different sized experiments with both high and low spatial
variation. Row–column designs, including the row and column incomplete blocks or alpha
designs (John andEccleston 1986;Williams 1986;Williams and John 1989), utilize blocking
in two dimensions to control spatial variation present in both directions and to lessen the
effects of possibly blocking in the wrong one-dimensional direction (Zystro et al. 2019).
Williams and Piepho (2013) found that the R-CDs were more efficient than the RCBD for
different trials and experiment sizes.

Federer (1956) proposed augmented experimental designs to evaluate more treatments
using similar resources by having checks replicated in a particular experimental design (i.e.,
RCBD or ALPHA) and then augmenting or filling in the experiment with unreplicated treat-
ments (Federer and Crossa 2012). The experimental error is estimated from the replicated
checks and used for statistical inference, and therefore, the error variance of the checks
should be similar to those from the unreplicated entries to avoid biases (Kempton 1984).
Cullis et al. (2006) proposed to use entries from the population to substitute replicated checks
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in grid plot designs to better avoid this bias and called this a partially replicated experimen-
tal design (PREP). Later, Williams et al. (2011) proposed the augmented PREP (A-PREP)
design to extend Cullis’ idea (Cullis et al. 2006) of the PREP for use in multi-environment
trials (METs) where all entries are evaluated with replications in one environment and are
unreplicated in all other environments. Furthermore, replicated entries for the whole MET
would be randomized according to an ALPHA or other experimental design. The main dif-
ference between the PREP and A-PREP designs is that the replicated entries are the same
in all locations in the PREP (Cullis et al. 2006) and different for each environment in the
A-PREP (Moehring et al. 2014; Williams et al. 2011).

Designing experiments according to an assumed spatial structure and a planned method
of spatial analysis was first suggested by Wilkinson et al. (1983) who proposed that trials
should be designed specifically with their method of nearest neighbor analysis in mind. A
group of similar models recommended by Besag and Kempton (1986) and Williams (1986)
were developed, so the neighbor relationship between plots only existed for plots within
the same incomplete block. The one-dimensional LV plus incomplete block model from
Williams (1986) was extended to two dimensions in an additive form by Williams et al.
(2006) and a separable form by Piepho and Williams (2010). Eccleston and Chan (1998)
characterized designs resulting from a separable AR1 model, a LV model, and a separable
moving average model and showed that the AR1×AR1 and LV designs are robust when the
assumed dependence structure is incorrect. PREP designs created specifically for analysis
with the Gilmour et al. (1997) model were developed by Cullis et al. (2006). Williams et al.
(2006) discussed the construction of resolvable spatial R-CD using a two-dimensional form
of the LV model and found that designs generated with an AR1 model were more efficient
when the autocorrelations in rows and columns were low. Williams and Piepho (2013)
also found comparable results in their study on the efficiency of designs generated using
separable AR1 models and separable and additive LV models for a range of dependence
structure parameters.

Spatial control can also be achieved at the analysis level of an experiment, regardless
of the randomization procedure, by using a plot’s position to correct for spatial patterns
through trend analysis (i.e., polynomial regression, Federer and Schlottfeldt 1954; Tamura
et al. 1988), neighbor analysis (Bartlett 1978; Kempton and Howes 1981; Williams 1986),
or modeling correlated errors in either rows or columns (Papadakis 1937; Zimmerman and
Harville 1991).

The inclusion of non-traditional spatial components in the analysis of RBE designs has
also been used to better control field spatial variation. Zimmerman and Harville (1991)
proposed a correlated error plus trend model to directly control for both large-scale and
small-scale spatial heterogeneity and showed that this model was more efficient than previ-
ously developed models. Gilmour et al. (1997) recommended the use of a two-dimensional
separable autoregressive process to model the spatial variance component of a row–column
model (AR1). Recent work has been done to compare RBE designs with the addition of
spatial components similar to those in the Zimmerman and Harville (1991) model. Borges
et al. (2019) and González-Barrios et al. (2019) compared several spatial error covariance
structures including the AR1 process and the two-dimensional exponential process with
a two-dimensional spline model using novel simulation approaches. They reported higher
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accuracy when spatial corrections were included and found that none of the spatial correc-
tions outperformed the use of good experimental designs.

The setting of RBE designs can also influence the effectiveness of the design and its
corresponding analysis through factors like the heritability of the trait (Borges et al. 2019),
the genotype by environment interaction (GE) structure of the MET (Moehring et al. 2014),
experimental unit and experiment size (Casler 2015; Lin and Binns 1986), and modeling
the relationship among genotypes (Moehring et al. 2014).

Broadly summarizing, there is a need to evaluate strategies to control spatial hetero-
geneity through the design and analysis of field experiments, to improve RBE designs and
analysis models with spatial components, to improve non-traditional spatial analysis mod-
els, to develop designs specifically to accommodate non-traditional spatial analysis models,
and to compare the various methodologies within each group. The goal of this study was to
use a simulation approach with real wheat performance data to compare classic and spatial
randomization-based experimental designs in their ability to efficiently control spatial vari-
ability as extensions to Moehring et al. (2014), Borges et al. (2019), and González-Barrios
et al. (2019). Specifically, the objectives were to evaluate the performance of SP designs
compared to classic experimental designs and to evaluate the performance of all the RBEs
with and without spatial corrections in a large number of scenarios of differing experimental
unit size, experiment size, GE level, relationship information among genotypes, and trait
heritability.

2. MATERIALS AND METHODS

2.1. GENERAL PROCEDURE

Thebasic procedure for the simulation follows those ofBorges et al. (2019) andGonzález-
Barrios et al. (2019) and is outlined in Fig. 1 and Supplemental Figure 1. First, phenotypic
data were obtained for 1314 advanced wheat lines evaluated in 60 location-year environ-
ments of a real field performance trial. The performance for five environments was simulated
for two levels of genotype by environment interaction (GE, GE:G=0.2 and 2.5) to create a
vector of true genotypic values for yield per environment. Simultaneously, spatial variability
of a real wheat uniformity trial (64 ha) was obtained to create a grid of plots for each of
two experimental unit sizes (2 × 3 and 4 × 6m2). At each of 100 independently sampled
sites within the uniformity trial, a random sample of true genotypic effects for yield were
randomly assigned to an experimental unit according to one of ten experimental designs to
create a new vector of simulated yields. Genotypic effects were randomized over the exper-
imental units of field variation 100 times for each scenario of the small-sized experiments
(50–83 genotypes) and 10 times for each scenario of the medium-sized experiments (200–
333 genotypes). Each vector of simulated yield was analyzed according to the respective
experimental design, two methods of spatial correction (no spatial correction, NSC; and
a two-dimensional autoregressive process, AR1×AR1), and two assumptions about the
relationship among genotypes (I and K) to retrieve a vector of estimated genotypic effects
for yield in each environment. The correlation between the true and the predicted genotypic
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values and the response to selection were used to compare experimental designs and spatial
correction performance in all scenarios.

2.2. REAL DATA FROM ADVANCED WHEAT LINES

2.2.1. Real Phenotypic Data

A total of 1314 advanced inbred wheat lines from the Wheat Breeding Program of
the National Agricultural Research Institute (INIA) of Uruguay (IWBP) were assessed
for grain yield (kg ha−1) in five locations in Uruguay (Dolores, 33◦ 50′ S, 58◦ 14′ W;
Durazno, 33◦ 33′ S, 56◦ 31′ W; La Estanzuela, 34◦ 20′ S, 57◦ 42′ W; Young, 32◦ 76′ S,
131 57◦ 57′ W; and Ruta2, 33◦ 45′ S, 57◦ 90′ W) from 2010 to 2017. For each of the
60 location-year environments, genotypes were evaluated in some or all of the following
trials as ALPHA designs: elite yield trials (EYT, F9) with four replications, advanced yield
trials (AYT, F8) with three replications, and preliminary yield trials (PYT, F7) with three
replications (Fig. 1a). Trials were further classified based on short-, intermediate-, and long-
cycle maturity. A subset of this population was described in detail in Lado et al. (2016).

2.2.2. Molecular Marker Data

The IWBP population was genotyped using genotyping-by-sequencing (GBS) (Elshire
et al. 2011) using amodification for wheat (Poland and Rife 2012) as described in Lado et al.
(2016). A total of 81,999 markers were used to estimate the realized additive relationship
matrix (K, Fig. 1a). The K matrix was estimated as the cross-product of the centered and
standardized marker states divided by the number of markers and was estimated using the
rrBLUP package (Endelman 2011).

2.2.3. Statistical Analysis of the Real Phenotypic Data

The real phenotypic data were analyzed using a two-step approach. First, the empirical
best linear unbiased estimates (E-BLUEs) were estimated for all genotypes in each maturity
group in each trial in each location-year environment following Lado et al. (2016). The term
E-BLUE was used here to indicate that variance components were unknown and estimated
from the data. The E-BLUEs of the genotypes in all environments (yi j ) were then analyzed
in a second step according to the following statistical model:

yi j = μ + gi + e j + gei j + ei j , (1)

whereμ is the overall mean or intercept, gi is the random effect of the ith genotype, e j is the
effect of the jth environment, gei j is the random effect of the interaction of the ith genotype
evaluated in the jth environment, and ei j is the residual error. The vector of genotypic effects

(g) is g ∼ N
(
0,Kσ 2

g

)
where K is the realized additive relationship matrix estimated with

the markers and σ 2
g is the estimated genotypic variance. The vector of genotype by environ-

ment interaction effects (ge) is ge ∼ N
(
0,K ⊗ �σ 2

ge

)
where � is the variance–covariance

matrix among environments modeled as a factor analytic of order 1 (FA1) structure,⊗ is the
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Figure 1. Diagramof the simulation strategy used to compare experimental designs and spatial correctionmethods
for different scenarios of experiment size, experimental unit size, genotype by environment interaction (GE),
heritability, and use of molecular marker information. Real data (a); a real wheat multi-environment trial was
conducted where 1314 genotypes, all with marker information, were evaluated in 60 location-year environments
in Uruguay. A two-stage approach was taken to first analyze each trial separately and then together to account for
GE. The result was a vector of empirical best linear unbiased predictors (E-BLUPs) for yield for each genotype
(g̃i ). Real field variability information (b); yield data were collected for a large (64 ha) wheat uniformity trial,
and kriging was performed to produce grids of experimental units across the uniformity trial for all combinations
of experimental unit size (2 × 3 and 4 × 6 m2) so that each experimental unit contained a single value of yield
(kg ha−1) to be used as a measure of spatial variation (ε∗

i jk ). One-hundred independent sites were then chosen
within the uniformity trial so a multi-environment trial with five environments could be simulated at each site.
Simulated phenotypic data (c); to simulate GE for five environments, effects were sampled from a multivariate
normal distribution which had a covariance matrix as a function of the marker-based relationship matrix, the
genetic variance, and predetermined values of σ 2

ge : σ 2
g (0.2 and 2.5). These effects were added to the vector of

E-BLUPs from A to produce a vector of true genotypic effects for each of five environments for each GE level.
Experimental design (d); at each site in the uniformity trial, an independent sample of genotypic effects from cwas
added to experimental units of spatial variation from b according to one of ten experimental designs. Additional
field noise (δi jk ) as a function of two predetermined levels of yield heritability (0.3 and 0.8) was also added to

produce the final simulated phenotypic data (ySIMi jk ). For small experiments, a re-randomization of the sample of
genotypes at each of the 100 sites occurred 100 times. For medium experiments, this occurred 10 times at each
of the 50 sites. Model analysis (e); for each scenario, the vector of simulated yield from part D was analyzed
according to a model with genotypic effects, environmental effects, GE, the corresponding design terms, and
additional spatial correction terms. Genotypic effects and GE were modeled using the g matrix either specifying
no relationship among genotypes (i) or a marker-based relationship among genotypes (k). Either no additional
spatial correction terms were included in the model (NSC) or terms for rows and columns according to a first-order
autoregressive structure (AR1×AR1) were included. Performance evaluation (f); two criteria were used to evaluate
the performance of the experimental designs and methods of spatial corrections in all scenarios: (1) the correlation
between the true genotypic values from part C and the predicted genotypic values from part e (COR), and (2) the
response to selection when selecting both locally and globally estimated using the breeder’s equation as a function
of COR, three standardized selection intensities, and the true genotypic variances from part c.
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Kronecker product, and σ 2
ge is the estimated GE variance. The following correlation struc-

tures among environments were evaluated, and the best model (i.e., FA1) was selected based
on both AIC and BIC statistics (BIC values are shown here): diagonal (57,334), compound
symmetry (55,830), heterogeneous compound symmetry (55,940), and factor analytic of
order 1 (54,912). The factor analytic of order 2 and the unstructured models failed to con-
verge. The vector of residual errors (e) is e ∼ N (0,De)whereDe is a block diagonal matrix
with the error variances within environments estimated in step one. Both the first and second
steps of this analysis were performed using the ASReml-R package (Butler et al. 2009) of
the R software (R Core Team 2019). Empirical best linear unbiased predictors (E-BLUP)
of the genotypes (g̃) from the second step of the analysis were used for the simulation study
(Fig. 1a).

2.3. REAL DATA FROM THE UNIFORMITY TRIAL AND CREATION OF THE

SPATIAL VARIABILITY MAPS

A uniformity trial of 64 ha was sown in Dolores (33◦ 50′ S, 58◦ 14′ W), Uruguay, with
the wheat cultivar ‘Nogal’ (USDA-ARS 1992) at a density of 120kg ha−1 (Fig. 1b). The
field was harvested on June 20, 2008, in 1445 rectangular plots of size 15×5 m2, and grain
yield (kg ha−1) was recorded via a yield monitor. From yield monitor data, an empiric
variogram was computed by Matheron’s method of moments considering a linear trend
surface according to x–y coordinates, and a Matern variogram model (kappa=1) was fitted.
Universal kriging was performed using the best fitted model and two different cell sizes of
the prediction grid in order to obtain two yield maps, each with a different experimental
unit size: 2 × 3 and 4 × 6m2 (Fig. 1b). Kriging allows for interpolation at a smaller scale
than the original continuously sampled field. Yield maps were created using the sp package
(Pebesma and Bivand 2005), and experimental variograms and kriging predictions were
obtained using the gstat package (Pebesma 2004) of the R software (R Core Team 2019).
One-hundred sites were randomly chosen within the uniformity trial yield maps for the
small experiments, while 50 were chosen for the medium experiments, and the real spatial
variation obtained from these sites for each of the two prediction grids was used in the
simulation procedure (Figs. 1b, 2).

2.4. SIMULATED SCENARIOS

A vector of simulated yield was created for each simulated scenario. Each scenario
included one level of each of the following factors: GE, experimental unit size, experiment
size, trait heritability, and experimental design.

2.4.1. Genotype by Environment Interaction

Genotype by environment interaction (GE) effects were simulated for all genotypes
(1314 wheat lines) for two GE levels according to a compound symmetry structure with
σ 2
GE : σ 2

G ratios of 0.2 and 2.5 (Fig. 1c) to create yield data for each genotype in a MET
with five environments. GE effects were sampled from a multivariate normal distribution,
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Figure 2. Characterization of the spatial variability of 100 sites in the uniformity trial after kriging raw yield
(kg ha−1) data for both experimental unit sizes (2 × 3 and 4 × 6m2). All 100 sites were used for the small
experiments (ng = 50−83), but only 50 sites were used for the medium experiments (ng = 200−333). A yield
variability map for the site with the minimum variation (Min), the median variation (Median), and the maximum
variation (Max) for each combination is shown. The number of plots in each figure corresponds to designs having
100 or 400 experimental units for small- and medium-sized experiments, respectively (i.e., PREPn , CRD, ALPHA,
R-CD, and SP designs).

ge ∼ N
(
0,K⊗IEσ 2

ge

)
, where IE is the identity matrix of order of the number of envi-

ronments (i.e., five), σ 2
ge is the GE variance calculated based on the GE to G (σ 2

ge : σ 2
g )

variance components ratio, and σ 2
g was estimated frommodel (1). Sampled values from this

distribution were added to the E-BLUPs (g̃) from model (1) to simulate the true genotypic
values within each of the five environments (g̃i + gei j = gi j ) for each GE level.

2.4.2. Experimental Unit Size

Two experimental unit sizes were evaluated as part of the simulation scenarios as
described before: 2 × 3 and 4 × 6 m2 (Fig. 1b). This was accomplished by using dif-
ferent grid sizes for the kriging of the uniformity trial. Consideration of the experimental
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unit size here was an evaluation of the field size and reflects the level of spatial variability
due to a larger occupied area. It is not a true evaluation of experimental unit size because we
used two different scales of the same kriged data and did not include any effect of intra-plot
competition or changes in experimental error variance due to the use of smaller experimental
units (Fig. 1b).

2.4.3. Experiment Size

Two sizes of experiments were defined in terms of the number of genotypes (ng) and
experimental units (n) evaluated. The CRD provides the base number of ng and n for both
small (ng = 50, n = 100) and medium (ng = 200, n = 400) experiment sizes. The
other designs were constructed appropriately using these base numbers with ng = 50–83
and n = 50–100 for the small experiments and ng = 200–333 and n = 200–400 for
the medium experiments depending on the design (Table 1). These experiment sizes are
common in plant breeding and are similar to those reported in other studies (Borges et al.
2019; González-Barrios et al. 2019).

2.4.4. Heritability

Two heritability values of yield on a genotype mean basis within environments were
evaluated as part of the simulation scenarios: low (0.3) and high (0.8). Thiswas accomplished
by increasing the noise level at each site (δi j see model (3) in the simulation procedure
described below; Fig. 1c).

Table 1. Number of genotypes (ng) and the number of experimental units (n) evaluated for small and medium
sized experiments for each experimental design

Experimental
designa

Replications within each
environment

Small experiment size Medium experiment size

Number of
genotypes
(ng)

Number of
experimental
units (n)

Number of
genotypes
(ng)

Number of
experimental
units (n)

UNREP 1 50 50 200 200
PREPg 1/2 50 60 200 240
PREPn 1/2 83 100 333 400
CRD 2 50 100 200 400
ALPHA 2 50 100 200 400
R-CD 2 50 100 200 400
SP 2 50 100 200 400

a Unreplicated (UNREP); partially replicated (PREP) including classic PREP (Cullis et al. 2006) and augmented
PREP (A-PREP, Williams et al. (2011)) as well as PREP keeping the total number of genotypes constant (PREPg)
and PREP keeping the total number of experimental units constant (PREPn); completely randomized experimental
design (CRD); alpha incomplete block design (ALPHA); resolvable row–column design (R-CD); and spatial
designs (SP) including two autocorrelation parameters: the site autocorrelation parameters (SPsite) and using 0.8
as the autocorrelation parameters (SP0.8) at every site
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2.4.5. Experimental Design

Genotypes were assigned to experimental units based on one of the following ten experi-
mental designs: an unreplicated design (UNREP), four partially replicated designs (PREPn ,
A-PREPn , PREPg , A-PREPg), a completely randomized design (CRD), an alpha-lattice
incomplete block design (ALPHA), a resolvable row–column design (R-CD), and two spa-
tial designs (SPsite and SP0.8, Supplemental Figure 2, Fig. 1d). All experimental designs
were assessed in small- and medium-sized experiments except for the PREPg and PREPn
designs which were not evaluated in medium-sized experiments. Each experimental design
was independently randomized over five environments at each site considering the GE
structure to create a multi-environment trial.

For the UNREP designs, all genotypes were unreplicated within each environment. The
CRD was randomized with two replications within each environment (Table 1, Fig. 1d,
Supplemental Figure 2).

For the PREP designs, 20% of the genotypes were replicated twice in a randomized
complete blockdesign, andunreplicated genotypeswere assigned at random to the remaining
plots. PREP designs with the same number of genotypes as the CRD were called PREPg ,
while PREP designs with the same number of experimental units as the CRD were called
PREPn (Table 1). PREP designs following Cullis et al. (2006) with the same replicated
genotypes in all locations were called PREP, while A-PREP designs following Williams
et al. (2011) with different genotypes replicated in each environment were called A-PREP.
Replicated genotypes were chosen at random other than with these restrictions (Table 1,
Fig. 1d, Supplemental Figure 2).

ALPHA designs were randomized with two complete replications (Table 1, Fig. 1d,
Supplemental Figure 2). The small (ng = 50) experiment size was randomized following
a 5×10 array (i.e., ten incomplete blocks of size five per replication), while the medium
(ng = 200) size was randomized following a 10 × 20 array (i.e., twenty incomplete blocks
of size ten per replication). For both experiment sizes, pairs of genotypes occurred either
never or once in all incomplete blocks (ALPHA(0,1)).

For the R-CD, a resolvable incomplete block design in both rows and columns with
two complete replications in each environment was used (Table 1, Fig. 1d, Supplemental
Figure 2). Similarly to the randomization of the ALPHA design, an ALPHA(0,1) design was
optimized so that each pair of genotypes was compared either never or once within a row
and within a column (Table 1, Fig. 1d, Supplemental Figure 2).

Two SP designs, SPsite and SP0.8, were constructed for a separable autoregressive (AR)
covariance structure where the variance parameters are known in advance as inWilliams and
Piepho (2013). A resolvable R-CDwas used, but the randomization of genotypes was further
optimized according to the spatial variation for each site (Table 1, Fig. 1d, Supplemental
Figure 2). Optimization was defined according to the A-optimality criteria of minimizing
the trace(X′V∗+X)−1 whereX is the design matrix andV∗+ is the variance of y (Eccleston
and Chan 1998; Williams and Piepho 2013) defined as:

V = γE Ir⊗Is⊗Ik + γCIr⊗Is⊗Jk + γRIr⊗Js⊗Ik + γSIr⊗
∑

R
⊗

∑
C

(2)
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where γE , γC , γR , and γS are the variance parameters for plot error (E), column (C), row
(R), and the spatial component (S), respectively. Jk and Js are kxk and sxs matrices of ones,
and Ir, Is, and Ik are the identity matrices of sizes rxr, sxs, and kxk, respectively, where
r is the number of replications, s is the number of columns, and k is the number of rows.
Additionally,

∑
R and

∑
C each have an AR(1) structure such that

∑
R = {ρ| j1− j2|

R } and∑
C = {ρ|i1−i2|

C } where i is the index of s columns, j is the index of k rows, and ρR and
ρC are the correlation parameters for rows and columns, respectively (Williams and Piepho
2013). For SPsite, autocorrelation parameters were calculated at each one of the 100 sites
in the uniformity trial and used as input to optimize the randomization. This represents the
best possible, although unlikely, situation where the actual spatial autocorrelation is known
before conducting the experiment. The ranges for ρR and ρc, were 0.93–0.99 and 0.94–
0.99, respectively, for 2×3 m2 experimental units and 0.80–0.99 and 0.92–0.99 for 4×6
m2 experimental units. For the SP0.8 design, an autocorrelation parameter of ρR = ρC = 0.8
was chosen to enhance the breadth of the study while modeling comparable autocorrelation
in the rows and columns following Williams et al. (2006).

The CRD and PREP designs were randomized using custom-built codes. The ALPHA
design was randomized with the agricolae package (de Mendiburu 2019) of the R software
(RCore Team 2019). TheR-CD and both SP designswere randomized inDiGGer (Coombes
2002) with a maximum of 50,000 phase 1 interchanges when optimizing within row and
columns under no spatial correlation and a maximum of 500,000 phase 2 interchanges when
optimizing according to spatial correlation (Williams and Piepho 2013).

2.5. SIMULATION PROCEDURE

Simulated yield for each iteration of each simulation scenario at each site in the uniformity
trial was calculated as follows (Fig. 1c):

ySIMi jk = gi j + ε∗
i jk + δi jk, (3)

where ySIMi jk is the simulated yield corresponding to the i th genotype assigned to the kth
experimental unit in the jth environment, and gi j is the true genotypic value of the i th
genotype in the jth environment as described earlier. ε∗

i jk is the field experimental error
obtained from the given plot in the uniformity trial, and δi jk is a repeatability error following
Borges et al. (2019). We assumed δi jk∼ N (0,σ 2

δ ) where σ 2
δ is a random noise variance

computed as a function of the predefined heritability of yield (σ 2
δ = 2

(
1−h2

h2

)
σ 2
g∗ − σ 2

ε∗)

where h2 = 0.3 or 0.8 as described earlier, σ 2
g∗ is the genotypic variance calculated from the

true genotypic values of sampled genotypes at each site, and σ 2
ε∗ is the field error variance

within the site. At each site in the small experiments, 100 iterations of model (3) were
conducted for each plot in each simulation scenario, and ten iterations were used for the
medium experiments. This resulted in 10,000 simulations for each scenario of the small
experiments and 500 for each scenario of the medium experiments. Random samples of
genotypes were independent across sites.
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2.6. STATISTICAL ANALYSIS OF THE SIMULATED DATA

The vectors of simulated yield from model (3) for each of ten experimental designs in
all simulation scenarios were analyzed according to a general statistical model using two
methods of spatial corrections and two types of relationship matrices in order to retrieve the
estimated genotypic effects (Fig. 1e):

yi jklm = μ + gi + e j + gei j + dk( j) + slm( j) + εi jklm, (4)

where yi jklm is the simulated yield for the ith genotype, the jth environment, kth replication
(when applicable), lth row, and mth column; μ is the overall mean, gi is a random effect
of the ith genotype, e j is the effect of the jth environment, gei j is the random effect of the
interaction between the ith genotype and the jth environment, dk( j) is the effect of the design
structure factors nested within the jth environment, slm( j) is the effect of the terms corre-
sponding to spatial corrections within the jth environment, and εi jklm is the residual error.

Correspondingly, g ∼ N
(
0,Gσ 2

g

)
and ge ∼ N

(
0,G⊗IEσ 2

ge

)
where G is the relation-

ship matrix among genotypes, σ 2
g is the genetic variance, IE is the identity matrix of order

of the number of environments, σ 2
ge is the genotype by environment interaction variance,

ε ∼ N (0,Dε), and Dε is the block diagonal matrix of error variances for each environment.
Two variance–covariance structures were used to model the relationship among genotypes
(G): The identity matrix (G = Ing) assuming unrelated genotypes and the realized additive
relationship matrix based on marker information (G=K) assuming the correlation among
genotypes are given by the genetic relationship among genotypes. The covariance among
all random effects was assumed zero (Fig. 1e). Design structure factors were defined based
on each experimental design. For the UNREP and CRD, dk( j) is null. For the PREP designs,
dk( j) = βt ( j), where βt ( j) is a fixed effect of the tth complete block within the jth environ-
ment. For the ALPHA design, dk( j) = βt ( j) + bq( j t), where bq( j t) is a random effect of the
qth incomplete block within the tth replication within the jth environment, b ∼ N (0,Db) ,

and Db is a block diagonal matrix of the incomplete block variances for each environment.
For the R-CD and SP designs, dk( j) = βt ( j) + rl( j) + cm( j) where rl( j) is a random effect
of the lth row within the jth environment, r ∼ N (0,DR), DR is a block diagonal matrix
of the row variances for each environment, cm( j) is a random effect of the mth column
within the jth environment, c ∼ N (0,DC ), andDC is a block diagonal matrix of the column
variances for each environment. Two spatial correction methods were considered by includ-
ing additional terms in the model (slm( j)). A no spatial correction (NSC) model was used
with slm( j) as null. In this case, it was assumed that the experimental design structure (e.g.,
blocking factors when applicable) is efficient at controlling the entire systematic environ-
mental variation. In the second method, the random row and column effects nested within
environments were added to the model (when these terms are not already included), and a
first-order autoregressive covariance structure (AR1) was used in both rows and columns
(slm( j) = rl( j)+cm( j),where r ∼ N (0,DR⊗AR1) and c ∼ N (0,DC⊗AR1)). Thiswas used
instead of modeling the AR1×AR1 correction in the R matrix due to software constraints.
All analyses were performed using the Sommer package (Covarrubias-Pazaran 2019) of the
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R software (R Core Team 2019) using the Newton–Raphson restricted maximum likelihood
method.

2.7. PERFORMANCE EVALUATION CRITERIA

The performance of the model in each scenario was evaluated using prediction accuracy
and response to selection. Prediction accuracy was estimated by the Pearson correlation
coefficient (COR) between the true (gi j ) and the predicted (g̃i j ) genotypic values. The
response to selection (R)was estimated from the breeder’s equation followingLorenz (2013)
as:

R = i r(gg̃)σg (5)

where i is the standardized selection intensity, r(gg̃) is the accuracy estimated as the Pearson
correlation (COR) between true and predicted genotypic values, and σg is the true genetic
standard deviation. Three values of standardized selection intensity equivalent to 5, 10, and
15% of individuals selected in the CRD (i.e., ng = 3, 5, and 8 in all small experiments, and
ng = 10, 20, and 30 in all medium experiments) were compared for local (i.e., selection
within environments) and global (i.e., selection across environments) response to selection.
This means that eight out of 50 genotypes are selected for each design in the small-sized
experiments besides the PREPn design in which eight out of 83 genotypes are selected.
To additionally evaluate the performance of simulations, the mean-based heritability was
estimated following Cullis et al. (2006):

H2
Cullis = 1 − v̄BLUP�..

2σ̂ 2
g

(6)

where v̄BLUP�..
is the mean variance of a difference of two BLUPs for the genotypic effect, σ̂ 2

g

is the genotypic variance, and both were estimated from model (4). Similar to the response
to selection, a global estimate (i.e., across locations) of the heritability was estimated from
model (4), while a local estimate (i.e., for each environment) was estimated from a modifi-
cation of model (4) for each location.

Each criterion was calculated for all iterations at all sites. Box plots were created to
summarize the evaluation criteria estimates using the ggplot2 package (Wickham 2016)
of the R software (R Core Team 2019). Finally, model convergence was estimated as the
proportion of times each scenario (i.e., combinations of experimental unit size, experimen-
tal design, GE level, heritability level, type of relationship among genotypes, and spatial
corrections) converged out of 10,000 iterations for the small experiments and 500 iterations
for the medium experiments.
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Figure 3. Correlation (COR) between true and predicted genotypic values for yield (kg ha−1) for ten experi-
mental designs, two heritability levels (i.e., low=0.3, high=0.8), two relationships among genotypes, and two
GE structures for the a small (i.e., 50–83 genotypes), and b medium (i.e., 200–333 genotypes) experiment sizes.
Experimental designs include: unreplicated (UNREP); partially replicated (PREP) including classic PREP (Cullis
et al. 2006) and augmented PREP (A-PREP, Williams et al. 2011) as well as PREP keeping the total number of
genotypes constant (PREPg) and PREP keeping the total number of experimental units constant (PREPn); com-
pletely randomized experimental design (CRD); resolvable alpha incomplete block design (ALPHA); resolvable
row–column design (R-CD); and spatial designs (SP) including two parameter comparisons (i.e., using the site
autocorrelation parameters (SPsite) and using 0.8 (SP0.8) as autocorrelation parameters for every site). PREPg and
PREPn designswere not evaluated for themedium-sized experiments. Each scenario of the small-sized experiments
was evaluated 100 times in each of 100 uniformity trial sites, and each scenario of the medium-sized experiments
was evaluated 10 times in each of 50 uniformity trial sites.

3. RESULTS

3.1. ACCURACY OF EXPERIMENTAL DESIGNS

The highest COR was achieved by the fully replicated experimental designs such as
the ALPHA design, SP designs, R-CD, and CRD (Tables 2, 3, Fig. 3). The experimental
design with the highest overall COR was the ALPHA (Tables 2, 3, Fig. 3). Furthermore, the
superiority of the ALPHA experimental design was more noticeable in the medium-sized
experiments with low heritability, low GE, and assuming independent genotypes (i.e., one
of the hardest situations tested for any model, Fig. 3). The SP designs performed similarly
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Figure 4. Correlation (COR) between true and predicted genotypic values for yield (kg ha−1) for eight experi-
mental designs with and without additional spatial corrections for the medium-sized experiments with the 4×6
m2 experimental unit and low heritability across all levels of GE (i.e., GE:G=0.2 or 2.5) and relationship among
genotypes (i.e.,G=K or I). Each experimental design is shown (colored boxes) with no spatial correction (NSC, no
pattern) and the AR1×AR1 correction (diagonal pattern). Experimental designs include: unreplicated (UNREP);
augmented partially replicated (A-PREP, Williams et al. 2011) as well as PREP keeping the total number of
genotypes constant (PREPg) and PREP keeping the total number of experimental units constant (PREPn); com-
pletely randomized experimental design (CRD); resolvable alpha incomplete block design (ALPHA); resolvable
row–column design (R-CD); and spatial designs (SP) including two parameter comparisons (i.e., using the site auto-
correlation parameters (SPsite) and using 0.8 (SP0.8) as autocorrelation parameters for every site). Medium-sized
experiments were evaluated with 10 iterations at each of 50 sites.

to the R-CD in all scenarios. The UNREP was the experimental design with the lowest
COR in all scenarios followed by the PREP designs. When the additive relationship matrix
was used, the PREPn experimental designs had higher COR than the PREPg experimental
designs (Fig. 3).

3.2. ACCURACY SPATIAL CORRECTIONS

Models with spatial corrections (i.e., AR1×AR1) had higher COR than models without
spatial corrections (i.e., NSC) inmedium-sized experiments with the large experimental unit
size (i.e., 4×6m2) and at low heritability (i.e., h2 = 0.3) for the ALPHA, CRD, PREPg and
PREPn experimental designs (Fig. 4). However, there was little effect of spatial corrections
for the other experimental designs or simulation scenarios in the medium-sized experiments
or for any scenarios of the small-sized experiments (Tables 2, 3), and the ALPHA had only
a small improvement.
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Figure 5. Response to selection for yield (kg ha−1)when selecting the top 5%of all genotypes for all experimental
designs in the a small-sized experiments (i.e., selecting 3 genotypes out of 50) and b medium-sized experiments
(i.e., selecting 10 individuals out of 200), respectively, across two heritability levels (i.e., low=0.3, high=0.8), two
relationships among genotypes (modeling correlation among genotypes using the realized additive relationship
matrix, G=K, or assuming uncorrelated genotypes, G= I), and for the higher level of genotype by environment
interaction (GE:G=0.2 and 2.5). Experimental designs include: unreplicated (UNREP); partially replicated (PREP)
including classic PREP (Cullis et al. 2006) and augmented PREP (A-PREP, Williams et al. 2011) as well as PREP
keeping the total number of genotypes constant (PREPg) and PREP keeping the total number of experimental units
constant (PREPn); completely randomized experimental design (CRD); resolvable alpha incomplete block design
(ALPHA); resolvable row–column design (R-CD); and spatial designs (SP) including two parameter comparisons
(i.e., using the site autocorrelation parameters (SPsite) and using 0.8 (SP0.8) as autocorrelation parameters for
every site). Small-sized experiments were evaluated with 100 iterations in each of 100 sites and medium-sized
experiments were evaluated with 10 iterations in each of 50 sites.

3.3. ACCURACY DEPENDING ON HERITABILITY, RELATIONSHIP AMONG

GENOTYPES, AND GE LEVEL

Overall, experimental design performance based on COR increased when markers were
used and with high heritability (Fig. 3). However, markers had less of an effect at high
heritability and high GE for all experimental designs (Fig. 3). The effect of the use of
markers on COR is more noticeable in the PREPn than in the other experimental designs
(Fig. 3).

Overall performance of the experimental designs was lower with higher GE, but this
difference was larger for the UNREP experimental design at high heritability (Fig. 3).
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Markers had no effect on COR for the UNREP experimental design at high heritability
(Fig. 3).

3.4. RESPONSE TO SELECTION

Higher response to selection for yield (kg ha−1) was observed under higher selection
intensity, higher heritability, with the use of markers (Fig. 5), and for low GE (Supplemental
Tables 1 and 2) although more differences between the levels of each factor were observed
for the medium-sized experiments compared to the small-sized experiments (Fig. 5). Local
selection resulted in higher response to selection than global selection (Fig. 5) with larger
differences between the two methods found at high GE compared to low GE (Supplemental
Figures 1 and 2). However, a similar ranking of experimental designs in their response to
selection was observed for both local and global selection strategies (Fig. 5). The PREPn
designs had the largest response to selection for all scenarios and selection intensities at
high heritability and at low heritability when markers were used. This advantage was less
evident when selection intensity was low, for lower heritability, and for the small-sized
experiments (Fig. 5). The UNREP design showed the worst response to selection in all
scenarios (Fig. 5). Designs with similar levels of replication including the CRD, ALPHA,
R-CD, and SP designs were similar in their response to selection for all scenarios and have
the largest response to selection at low heritability when markers are not used.

3.5. MODEL PERFORMANCE BASED ON HERITABILITY

The local heritability for the CRD showed similar values as those simulated with an
average of 0.27 for low heritability scenarios (i.e., h2 = 0.3) and 0.77 for high heritability
scenarios (i.e., h2 = 0.8) (Supplemental Figure 3). Higher heritabilities were obtained
for the other replicated experimental designs. Global heritability was similar for low GE,
but lower heritabilities were obtained for all experimental designs with high GE. Overall,
simulated data recovered heritability scenarios as expected.

3.6. MODEL CONVERGENCE

Model convergence was high (>80%) for all scenarios of the small-sized experiments
except for the UNREP at low heritability and high GE (Supplemental Table 3). For the
medium-sized experiments, model convergence was lower for the UNREP, A-PREPg, A-
PREPn, CRD, and ALPHA at high heritability and low GE (Supplemental Table 4).

4. DISCUSSION

A large amount of spatial variability in agriculture field experiments occurs as a result
of spatial, temporal, and spatiotemporal variations in fertility, moisture, slope, shade, man-
agement practices, disease and pests incidence, and microclimatic variations (Borges et al.
2019; González-Barrios et al. 2019; Grondona et al. 1996; Stefanova et al. 2009). Effectively
controlling this spatial variation within a field is necessary to produce accurate and unbiased
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estimates of treatment effects (Grondona et al. 1996). Several studies have evaluatedmethod-
ologies proposed to solve this complex problem (Borges et al. 2019; González-Barrios et al.
2019; Moehring et al. 2014), but evaluations under real field variability for a broad set of
situations are still lacking. This study evaluated ten experimental designs with and without
spatial corrections in 100 sites of a uniformity trial with differing amounts of spatial varia-
tion to determine their relative abilities at controlling the spatial variation. The designs were
tested in a range of scenarios including differing experiment sizes, experimental unit sizes,
trait heritabilities, levels of GE, and the relationship among genotypes. The results from
this study provide a guide to researchers for designing and analyzing routinely conducted
experiments.

4.1. EXPERIMENTAL DESIGN

The setting of both spatial and classic experimental designs can influence the effectiveness
of the experimental design and its corresponding analysis through factors like the heritability
of the trait (Borges et al. 2019; de S. Bueno andGilmour 2003; González-Barrios et al. 2019;
Mramba et al. 2018; Piepho and Möehring 2007), the GE structure of the MET (Borges
et al. 2019; Casler 2015; González-Barrios et al. 2019; Lado et al. 2016; Moehring et al.
2014; Robbins et al. 2012), the experimental unit size (Borges et al. 2019; Casler 2015;
González-Barrios et al. 2019; Mramba et al. 2018; Velazco et al. 2017), and specifying the
relationship among genotypes (González-Barrios et al. 2019; Lado et al. 2016; Mramba
et al. 2018). In this study, completely replicated designs (i.e., ALPHA, SP designs, R-CD,
and CRD) outperformed PREP and UNREP designs in terms of COR in all tested scenarios
of trait heritability, relationship among genotypes, and GE levels regardless of the size of the
experiment (i.e., small or medium). This result was expected as replicated designs enable
more accurate estimates of genotypic effects, variance components, and especially the error
variance (Fisher 1926). Among all experimental designs, the ALPHA was the overall best
for most scenarios. More prominent differences in the relative performance of experimental
designs were observed in medium experiments than in small experiments. For instance, the
ALPHA design showed higher COR at low heritability and at low GE than other designs
in the medium experiments. However, the CRD, R-CD, and spatial designs (i.e., SPsite and
SP0.8) performed similarly to each other and had only slightly lower COR than the ALPHA
design in many scenarios of the small experiments. The similar performance of the CRD
compared to designs that utilize blocking indicates that blockingmay not have been effective
at controlling block variation in our study. Blocking was found to be less effective in specific
sites with low field variability in Borges et al. (2019), and therefore, this might indicate low
levels of spatial variability in our study. The fields evaluated in Borges et al. (2019) had an
area 1.2 to 20 times larger than those evaluated in our study.

The performance of the PREP designs in terms of COR was intermediate to the perfor-
mance of the UNREP and completely replicated designs, which was expected (Moehring
et al. 2014) because fewer replications were used in comparison with the fully replicated
designs (Cullis et al. 2006; Moehring et al. 2014; Williams et al. 2011). Other studies found
that for a fixed trial size, PREP designs are efficient and can outperform replicated designs in
METs (Cullis et al. 2006; Moehring et al. 2014). Comparing among PREP designs, PREPn
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designs outperformed PREPg designs in terms of COR when markers were used, and this
was more evident at low heritability. One of the most critical factors affecting design per-
formance is the number of error degrees of freedom (Clarke and Stefanova 2011), and this
number is determined by the experiment size and the number of replicated plots. Therefore,
PREPn designs with more error degrees of freedom have more power than PREPg designs,
especially at low heritability when the increase in degrees of freedom is more impactful than
at high heritability. The PREPn design also appears to partially compensate for the lack of
replications when the relationship among genotypes from markers is included.

The two SP designs (i.e., SPsite and SP0.8) evaluated in this study had similar COR to
the R-CD for all scenarios in both small- and medium-sized experiments. SP designs are
not efficient when the autocorrelation between plots is high (Williams et al. 2006) as in our
study.Williams and Piepho (2013) found very similar relative efficiencies for SP designs and
R-CDs for a range of spatial variation parameter sets, but the SP designs and the R-CDwere
always better than RCBDs in their study. Therefore, it is not always necessary nor beneficial
to know the underlying spatial structure of a field a priori. Additionally, Piepho et al. (2013)
emphasized that the analysis of SP designs does not have the same randomization protection
compared to randomized-based designs. Therefore, when designing an experiment, it is
important to consider the balance between the benefit of protection due to randomization
and better prediction and precision for treatment mean comparisons. We constructed our SP
designs using a row–column design with an AR1 correlation structure, and the same spatial
structure was used as an additional spatial correction.

The PREPn design had the highest response to selection for all scenarios of both the
small and medium experiments except when the heritability was low and markers were
not included in the model. Because the accuracy of the PREPn is smaller than that of the
ALPHA, the response to selection is mainly driven by the larger selection intensity that
can be achieved when selecting the same number of individuals from a larger population
(i.e., ng = 50 for the small ALPHA versus ng = 83 for the small PREPn). Moehring et al.
(2014) showed similar results for METs. González-Barrios et al. (2019) found a similar
result for the use of larger population sizes, although they found a trade-off between the
number of replications and the number of genotypes evaluated. As for the other designs, the
UNREP always had the lowest response to selection, and the CRD, ALPHA, R-CD, and SP
designs were similar in their response to selection and usually intermediate to the PREPn
and UNREP designs. Additionally, the response to selection was higher for local selection
compared to global selection which was attributed to GE being exploited at a local scale.

4.2. SPATIAL CORRECTION

Spatial variability can be controlled using different R matrix correlation structures in one
or two dimensions (Cullis and Gleeson 1991; Gilmour et al. 1997; Qiao et al. 2000), trend
analysis, or a combinations of both (Brownie et al. 1993; Casler and Undersander 2000;
Zimmerman and Harville 1991). Spatial variation was modeled in this study by adding
random row and column effects with first-order autoregressive covariance structures to the
systematic part of the model instead of modeling the R matrix due to software constrains. In
general, modeling the spatial correlation structure with the AR1×AR1 terms had a slight
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to no improvement for any design in any scenario except for the medium-sized PREPg ,
PREPn , CRD, and ALPHA designs with the larger experimental unit size (i.e., 4×6 m2)

under low heritability. More prominent differences due to spatial correction found in our
largest field tested (i.e., medium experiments with 4×6m2 experimental units) indicate that
experiments that cover larger fields would probably benefit more from spatial corrections
in their model.

Experimental design randomization may have played an important role in addressing
some patterns of spatial variation (Piepho et al. 2013) which could be one of the reasons for
the marginal to no response of spatial corrections. Contrary to the results here, other studies
found that spatial corrections greatly improve the performance of experimental designs
(Borges et al. 2019; Casler 2010; Federer 1998; González-Barrios et al. 2019). The AR1
(Borges et al. 2019), AR1×AR1 (Cullis and Gleeson 1991; Moehring et al. 2014; Piepho
and Williams 2010), and spline (González-Barrios et al. 2019) models have been identified
as superior spatial correction models, but it has also been shown that the best spatial model
is case specific and depends on the experimental design and field heterogeneity (Beeck et al.
2010; Borges et al. 2019; Cullis and Gleeson 1991; Müller et al. 2010; Moehring et al. 2014;
Richter and Kroschewski 2012; Stefanova et al. 2009; Williams 1986; Wu et al. 1998). In
our study, the spatial corrections were not modeled in the R matrix as in other studies due
to software restrictions. This is probably the reason why our spatial corrections were not as
effective as in other studies.

4.3. EXPERIMENTAL UNIT AND EXPERIMENT SIZE

Each experimental designwas evaluated in two sizes of experiments (based on the number
of genotypes evaluated)with two sizes of experimental units (i.e., plots) resulting in different
overall field sizes. Small experiments (i.e., ng = 50–83) with the small experimental unit
(i.e., 2×3 m2) occupied 300–600 m2 depending on the experimental design, while small
experiments with the larger experimental unit (i.e., 4×6 m2) occupied 1200–2400 m2.
Medium experiments (i.e., ng = 200–333) with the smaller experimental unit ranged from
1200 to 2400 m2, and the medium experiments with the large experimental unit ranged from
4800 to 9600 m2.

No differences in COR were observed with the change in experimental unit sizes in
our study, and the COR was higher for medium experiment sizes than small experiments
for most of the experimental designs. However, smaller COR in larger experiments was
associated with large field variability in other large field experiment studies (Borges et al.
2019). According to Smith’s law (Smith 1938), there is a negative asymptotic relationship
between variance on a single-plot basis and plot size, but this relationship is affected by
several factors and their interactions (such as species or environment). Therefore, in terms
of reducing the variance, the optimum between an increase in plot size resulting in a larger
experimental area and a reduction in plot size to minimize this area depends on the shape of
this relationship and therefore on the spatial variability of the whole field (Casler 2015). In
our study,wemodified thefield size by evaluating different experimental unit and experiment
sizes, but we did not evaluate different relationships for the intra-plot variance.
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4.4. HERITABILITY, RELATIONSHIP AMONG GENOTYPES, AND GENOTYPE BY

ENVIRONMENT INTERACTION

Trait heritability is one of the most important factors affecting the performance of predic-
tion models (Bhatta et al. 2020; Zhang et al. 2017) and in particular, experimental designs
(Borges et al. 2019; de S. Bueno and Gilmour 2003; González-Barrios et al. 2019; Mramba
et al. 2018; Piepho and Möehring 2007) because for traits with high heritability, less noise
is present and identifying genotypic signals becomes easier no matter the experimental
design. In the current study, COR was higher for high trait heritability compared to low trait
heritability for all designs. Modeling the relationship among genotypes increased the COR
for all experimental designs, but the effect was larger under low heritability. Incorporating
the relationships among genotypes into the models was beneficial because molecular mark-
ers can provide additional information for predicting genotypic performance by borrowing
information from relatives, essentially acting as additional replications (Piepho et al. 2008).
The performance of genotypes for traits with high heritability can easily be predicted with
phenotypic information (i.e., G= I) evaluated in proper experimental designs; therefore,
the correlation among genotypes does not add additional information, and its effect is not
noticeable under high trait heritability. As expected, the CORwas reduced with the increase
in GE, but the reduction in COR was less evident at high trait heritability for all designs
except the UNREP.

4.5. SIMULATION PERFORMANCE

The lowest convergence occurred for the small-sized UNREP design at low heritability
and high GE. Moderate convergence was observed for the medium-sized PREP, CRD,
and ALPHA designs at high heritability and low GE. Higher proportions of convergence
(>80%) were observed for most other scenarios. The main reason for the convergence
issue with UNREP may be associated with the heterogeneous covariance error assumption.
Other simulation studies have also recognized convergence problems in the analysis of
experimental designs associated with autoregressive variance models with several fixed and
random effects or with autocorrelation near unity while fitting spatial error structures within
blocks (Moehring et al. 2014; Robbins et al. 2012; Stefanova et al. 2009).

Simulation performance was also evaluated with the Cullis et al. (2006) estimate of
mean-based heritability. According to these authors, the heritability is best defined in terms
of pairwise comparisons among genotypes, particularly in the presence of unbalanced data
(Cullis et al. 2006). In general, data were simulated properly in terms of their heritability;
the local heritability (i.e., per location) realized from the CRD experiments was similar to
that simulated for the low heritability (i.e., 0.27 vs. 0.3 and 0.77 vs. 0.8). Global heritability
(i.e., for all locations combined) was lower when GE was high, which was also expected as
the GE variance is larger. Lower heritabilities were found for all experimental designs and
GE levels in global and local selection when the genotypic relationship matrix was used
(i.e., G=K, data not shown), which was attributed to smaller estimates of the genotypic
variance. Underestimation of mean-based heritability was found for other studies modeling
the genotypic relationship matrix (Kruijer et al. 2015) and specifically for marker-based
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estimates with the Cullis et al. (2006) heritability (Ould Estaghvirou et al. 2013). Larger
standard errors and sometimes unrealistic biological values were also obtained in these cases
(Kruijer et al. 2015). Schmidt et al. (2019) recommends the Cullis et al. (2006) estimates
for unrelated genotypes estimations (G= I).

The genotype by environment ratios were higher than the ones simulated for all scenarios
(i.e., 0.5 for GE:G=0.2 and larger than 10 for GE:G=2.5). This may be a consequence of
the simulation strategy or the modeling component where GE includes part of the variation
in the main effects.

5. CONCLUSION

Our study evaluated the comparisons of classic experimental designs and spatial designs
with and without spatial corrections in a range of scenarios. The ALPHA design was, in
general, more accurate at predicting true genotypic values than other experimental designs
for any combination of heritability, relationship among genotypes, and GE level, whereas
the UNREP design was the worst in terms of both predicting the true genotypic values and
response to selection. TheALPHAdesign had similar values of response to selection to those
of the CRD, R-CD, and SP designs, but the PREPn design outperformed all other designs.
Spatial corrections improved the performance of some designs such as PREPg , PREPn ,
and CRD designs, especially for medium-sized experiments and at low trait heritability.
This study provides results covering a broad range of scenarios that could be applicable
to many plant breeding efforts and worked to unify some of the methodologies regarding
experimental design and analysis.
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